Cao Cheng, Akalin Acar Zeynep, Kreutz-Delgado Kenneth, Makeig Scott
Swartz Center of Computational Neuroscience, Univ of California San Diego, CA, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:1546-9. doi: 10.1109/EMBC.2012.6346237.
Here, we introduce a novel approach to the EEG inverse problem based on the assumption that principal cortical sources of multi-channel EEG recordings may be assumed to be spatially sparse, compact, and smooth (SCS). To enforce these characteristics of solutions to the EEG inverse problem, we propose a correlation-variance model which factors a cortical source space covariance matrix into the multiplication of a pre-given correlation coefficient matrix and the square root of the diagonal variance matrix learned from the data under a Bayesian learning framework. We tested the SCS method using simulated EEG data with various SNR and applied it to a real ECOG data set. We compare the results of SCS to those of an established SBL algorithm.
在此,我们基于多通道脑电图记录的主要皮层源可假定为空间稀疏、紧凑且平滑(SCS)这一假设,引入一种解决脑电图逆问题的新方法。为了强化脑电图逆问题解的这些特性,我们提出一种相关 - 方差模型,该模型在贝叶斯学习框架下,将皮层源空间协方差矩阵分解为一个预先给定的相关系数矩阵与从数据中学习得到的对角方差矩阵平方根的乘积。我们使用具有不同信噪比的模拟脑电图数据测试了SCS方法,并将其应用于一个真实的脑皮层电图数据集。我们将SCS的结果与一种既定的稀疏贝叶斯学习(SBL)算法的结果进行比较。