Department of Neurology, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, Netherlands.
Department of Epidemiology, Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, Netherlands; Cochrane Netherlands, University Medical Centre Utrecht, Utrecht, Netherlands.
Lancet Neurol. 2018 May;17(5):423-433. doi: 10.1016/S1474-4422(18)30089-9. Epub 2018 Mar 26.
Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive, fatal motor neuron disease with a variable natural history. There are no accurate models that predict the disease course and outcomes, which complicates risk assessment and counselling for individual patients, stratification of patients for trials, and timing of interventions. We therefore aimed to develop and validate a model for predicting a composite survival endpoint for individual patients with ALS.
We obtained data for patients from 14 specialised ALS centres (each one designated as a cohort) in Belgium, France, the Netherlands, Germany, Ireland, Italy, Portugal, Switzerland, and the UK. All patients were diagnosed in the centres after excluding other diagnoses and classified according to revised El Escorial criteria. We assessed 16 patient characteristics as potential predictors of a composite survival outcome (time between onset of symptoms and non-invasive ventilation for more than 23 h per day, tracheostomy, or death) and applied backward elimination with bootstrapping in the largest population-based dataset for predictor selection. Data were gathered on the day of diagnosis or as soon as possible thereafter. Predictors that were selected in more than 70% of the bootstrap resamples were used to develop a multivariable Royston-Parmar model for predicting the composite survival outcome in individual patients. We assessed the generalisability of the model by estimating heterogeneity of predictive accuracy across external populations (ie, populations not used to develop the model) using internal-external cross-validation, and quantified the discrimination using the concordance (c) statistic (area under the receiver operator characteristic curve) and calibration using a calibration slope.
Data were collected between Jan 1, 1992, and Sept 22, 2016 (the largest data-set included data from 1936 patients). The median follow-up time was 97·5 months (IQR 52·9-168·5). Eight candidate predictors entered the prediction model: bulbar versus non-bulbar onset (univariable hazard ratio [HR] 1·71, 95% CI 1·63-1·79), age at onset (1·03, 1·03-1·03), definite versus probable or possible ALS (1·47, 1·39-1·55), diagnostic delay (0·52, 0·51-0·53), forced vital capacity (HR 0·99, 0·99-0·99), progression rate (6·33, 5·92-6·76), frontotemporal dementia (1·34, 1·20-1·50), and presence of a C9orf72 repeat expansion (1·45, 1·31-1·61), all p<0·0001. The c statistic for external predictive accuracy of the model was 0·78 (95% CI 0·77-0·80; 95% prediction interval [PI] 0·74-0·82) and the calibration slope was 1·01 (95% CI 0·95-1·07; 95% PI 0·83-1·18). The model was used to define five groups with distinct median predicted (SE) and observed (SE) times in months from symptom onset to the composite survival outcome: very short 17·7 (0·20), 16·5 (0·23); short 25·3 (0·06), 25·2 (0·35); intermediate 32·2 (0·09), 32·8 (0·46); long 43·7 (0·21), 44·6 (0·74); and very long 91·0 (1·84), 85·6 (1·96).
We have developed an externally validated model to predict survival without tracheostomy and non-invasive ventilation for more than 23 h per day in European patients with ALS. This model could be applied to individualised patient management, counselling, and future trial design, but to maximise the benefit and prevent harm it is intended to be used by medical doctors only.
Netherlands ALS Foundation.
肌萎缩侧索硬化症(ALS)是一种进行性致命的运动神经元疾病,其自然病史各不相同。目前尚无准确的模型可以预测疾病进程和结果,这使得对个体患者的风险评估和咨询、临床试验的分层以及干预时机的确定变得复杂。因此,我们旨在开发和验证一种用于预测个体 ALS 患者复合生存终点的模型。
我们从比利时、法国、荷兰、德国、爱尔兰、意大利、葡萄牙、瑞士和英国的 14 个专门的 ALS 中心(每个中心都被指定为一个队列)获得了患者的数据。所有患者在排除其他诊断后均在中心被诊断,并根据修订后的埃尔埃斯科里亚尔标准进行分类。我们评估了 16 个患者特征,作为复合生存结局(症状发作后开始非侵入性通气时间超过 23 小时/天、气管切开术或死亡)的潜在预测因素,并在最大的基于人群的数据集中应用向后消除和引导抽样进行预测因素选择。数据是在诊断当天或之后尽快收集的。在超过 70%的引导重采样中被选择的预测因素被用于开发用于预测个体患者复合生存结局的多变量罗伊斯顿-帕默模型。我们通过内部-外部交叉验证评估模型在外部人群(即未用于开发模型的人群)中的预测准确性的异质性,通过一致性(c)统计量(接收者操作特征曲线下的面积)和校准斜率来量化判别能力。
数据收集时间为 1992 年 1 月 1 日至 2016 年 9 月 22 日(最大数据集包括 1936 名患者的数据)。中位随访时间为 97.5 个月(IQR 52.9-168.5)。有 8 个候选预测因素进入预测模型:球部与非球部发病(单变量危险比[HR]1.71,95%CI 1.63-1.79)、发病年龄(1.03,1.03-1.03)、明确与可能或可能的 ALS(1.47,1.39-1.55)、诊断延迟(0.52,0.51-0.53)、用力肺活量(HR 0.99,0.99-0.99)、进展率(6.33,5.92-6.76)、额颞叶痴呆(1.34,1.20-1.50)和 C9orf72 重复扩张的存在(1.45,1.31-1.61),所有 p<0.0001。模型对外部预测准确性的 c 统计量为 0.78(95%CI 0.77-0.80;95%预测区间[PI]0.74-0.82),校准斜率为 1.01(95%CI 0.95-1.07;95%PI 0.83-1.18)。该模型用于定义五个具有不同中位预测(SE)和观察(SE)时间的组:非常短 17.7(0.20),16.5(0.23);短 25.3(0.06),25.2(0.35);中等 32.2(0.09),32.8(0.46);长 43.7(0.21),44.6(0.74);非常长 91.0(1.84),85.6(1.96)。
我们已经开发了一种经过外部验证的模型,用于预测欧洲 ALS 患者无气管切开术和非侵入性通气时间超过 23 小时/天的生存情况。该模型可用于个体化患者管理、咨询和未来的临床试验设计,但为了最大程度地获益并防止伤害,它旨在仅供医生使用。
荷兰 ALS 基金会。