Luteijn Maartje J, Bhaskar Varun, Trojer Dominic, Schürz Melanie, Mahboubi Hicham, Handl Cornelia, Pizzato Nicolas, Pfeifer Martin, Dafinca Ruxandra, Voshol Hans, Giorgetti Elisa, Manneville Carole, Garnier Isabelle P M, Müller Matthias, Zeng Fanning, Buntin Kathrin, Markwalder Roger, Schröder Harald, Weiler Jan, Khar Dora, Schuhmann Tim, Groot-Kormelink Paul J, Keller Caroline Gubser, Farmer Pierre, MacKay Angela, Beibel Martin, Roma Guglielmo, D'Ario Giovanni, Merkl Claudia, Schebesta Michael, Hild Marc, Elwood Fiona, Vahsen Björn F, Ripin Nina, Clery Antoine, Allain Frederic, Labow Mark, Gabriel Daniela, Chao Jeffrey A, Talbot Kevin, Nash Mark, Hunziker Jürg, Meisner-Kober Nicole C
Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland.
Friedrich Miescher Institute for Biomedical Research, Department Genomic Regulation, Basel, 4056, Switzerland.
Nucleic Acids Res. 2025 Apr 10;53(7). doi: 10.1093/nar/gkaf253.
An intronic G4C2 repeat expansion in the C9ORF72 gene is the major known cause for Amyotrophic Lateral Sclerosis (ALS), with current evidence for both, loss of function and pathological gain of function disease mechanisms. We screened 96 200 small molecules in C9ORF72 patient iPS neurons for modulation of nuclear G4C2 RNA foci and identified 82 validated hits, including the Brd4 inhibitor JQ1 as well as novel analogs of Spliceostatin-A, a known modulator of SF3B1, the branch point binding protein of the U2-snRNP. Spliceosome modulation by these SF3B1 targeted compounds recruits SRSF1 to nuclear G4C2 RNA, mobilizing it from RNA foci into nucleocytoplasmic export. This leads to increased repeat-associated non-canonical (RAN) translation and ultimately, enhanced cell toxicity. Our data (i) provide a new pharmacological entry point with novel as well as known, publicly available tool compounds for dissection of C9ORF72 pathobiology in C9ORF72 ALS models, (ii) allowing to differentially modulate RNA foci versus RAN translation, and (iii) suggest that therapeutic RNA foci elimination strategies warrant caution due to a potential storage function, counteracting translation into toxic dipeptide repeat polyproteins. Instead, our data support modulation of nuclear export via SRSF1 or SR protein kinases as possible targets for future pharmacological drug discovery.
C9ORF72基因内含子中的G4C2重复序列扩增是肌萎缩侧索硬化症(ALS)的主要已知病因,目前有证据表明其致病机制既有功能丧失,也有病理性功能获得。我们在C9ORF72患者诱导多能干细胞来源的神经元中筛选了96200种小分子,以调节核内G4C2 RNA病灶,鉴定出82种经过验证的活性化合物,包括Brd4抑制剂JQ1以及Spliceostatin - A的新型类似物,Spliceostatin - A是已知的SF3B1调节剂,SF3B1是U2 - snRNP的分支点结合蛋白。这些靶向SF3B1的化合物对剪接体的调节作用会将SRSF1招募到核内G4C2 RNA上,使其从RNA病灶转移到核质输出过程中。这导致重复相关的非规范(RAN)翻译增加,最终增强细胞毒性。我们的数据(i)为在C9ORF72 ALS模型中剖析C9ORF72病理生物学提供了一个新的药理学切入点,既有新型化合物,也有已知的、公开可用的工具化合物;(ii)能够分别调节RNA病灶与RAN翻译;(iii)表明由于RNA病灶可能具有储存功能,可抵消其翻译成有毒二肽重复多聚蛋白的过程,因此治疗性消除RNA病灶的策略需谨慎。相反,我们的数据支持将通过SRSF1或SR蛋白激酶调节核输出作为未来药理学药物发现的可能靶点。