Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg, Germany.
BIOSS Centre for Biological Signalling Studies, Schänzlestraße 1, 79104 Freiburg, Germany.
Science. 2018 Mar 30;359(6383):1484-1489. doi: 10.1126/science.aar2765.
Reduction of N by nitrogenases occurs at an organometallic iron cofactor that commonly also contains either molybdenum or vanadium. The well-characterized resting state of the cofactor does not bind substrate, so its mode of action remains enigmatic. Carbon monoxide was recently found to replace a bridging sulfide, but the mechanistic relevance was unclear. Here we report the structural analysis of vanadium nitrogenase with a bound intermediate, interpreted as a μ-bridging, protonated nitrogen that implies the site and mode of substrate binding to the cofactor. Binding results in a flip of amino acid glutamine 176, which hydrogen-bonds the ligand and creates a holding position for the displaced sulfide. The intermediate likely represents state E or E of the Thorneley-Lowe model and provides clues to the remainder of the catalytic cycle.
固氮酶将氮还原发生在一个有机金属铁辅因子上,该辅因子通常还含有钼或钒。该辅因子的特征明确的静息状态不结合底物,因此其作用机制仍然神秘。最近发现一氧化碳取代了桥接的硫化物,但机制相关性尚不清楚。在这里,我们报告了结合中间产物的钒固氮酶的结构分析,该中间产物被解释为μ桥接的质子化氮,这暗示了底物与辅因子结合的位置和方式。结合导致氨基酸谷氨酰胺 176 的翻转,该氨基酸与配体形成氢键,并为取代的硫化物创造了一个保持位置。该中间产物可能代表 Thorneley-Lowe 模型的 E 态或 E 态,并为催化循环的其余部分提供了线索。