Sengupta Kushal, Joyce Justin P, Decamps Laure, Kang Liqun, Bjornsson Ragnar, Rüdiger Olaf, DeBeer Serena
Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany, 45470.
J Am Chem Soc. 2025 Jan 15;147(2):2099-2114. doi: 10.1021/jacs.4c16047. Epub 2025 Jan 2.
Molybdenum nitrogenase plays a crucial role in the biological nitrogen cycle by catalyzing the reduction of dinitrogen (N) to ammonia (NH) under ambient conditions. However, the underlying mechanisms of nitrogenase catalysis, including electron and proton transfer dynamics, remain only partially understood. In this study, we covalently attached molybdenum nitrogenase (MoFe) to gold electrodes and utilized surface-enhanced infrared absorption spectroscopy (SEIRA) coupled with electrochemistry techniques to investigate its catalytic mechanism. Our biohybrid system enabled electron transfer via a mild mediator, likely mimicking the natural electron flow through the P-cluster to FeMoco, the enzyme's active site. For the first time, we experimentally observed both terminal and bridging S-H stretching frequencies, resulting from the protonation of bridging sulfides in FeMoco during turnover conditions providing direct evidence of their role in catalysis. These experimental observations are further supported by QM/MM calculations. Additionally, we investigated CO inhibition, demonstrating both CO binding and unbinding dynamics under electrochemical conditions. These insights not only advance our understanding of the mechanistic cycle of molybdenum nitrogenase but also establish a foundation for studying alternative nitrogenases, including vanadium and iron nitrogenases.
钼固氮酶在生物氮循环中起着关键作用,它能在环境条件下催化将氮气(N₂)还原为氨(NH₃)。然而,固氮酶催化的潜在机制,包括电子和质子转移动力学,目前仍只得到部分理解。在本研究中,我们将钼固氮酶(MoFe)共价连接到金电极上,并利用表面增强红外吸收光谱(SEIRA)结合电化学技术来研究其催化机制。我们的生物杂交系统通过一种温和的介质实现电子转移,这可能模拟了通过P簇到该酶活性位点FeMoco的自然电子流。我们首次通过实验观察到了末端和桥连S - H伸缩频率,这是在周转条件下FeMoco中桥连硫化物质子化产生的,为它们在催化中的作用提供了直接证据。这些实验观察结果得到了量子力学/分子力学(QM/MM)计算的进一步支持。此外,我们研究了一氧化碳抑制作用,展示了在电化学条件下一氧化碳的结合和解离动力学。这些见解不仅推进了我们对钼固氮酶机制循环的理解,也为研究包括钒固氮酶和铁固氮酶在内的其他固氮酶奠定了基础。