Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands.
UOC Medical Genetics, Giannina Gaslini Institute, Genova, Italy.
J Med Genet. 2018 Aug;55(8):530-537. doi: 10.1136/jmedgenet-2017-105216. Epub 2018 Mar 29.
Hereditary recurrent fevers (HRFs) are rare inflammatory diseases sharing similar clinical symptoms and effectively treated with anti-inflammatory biological drugs. Accurate diagnosis of HRF relies heavily on genetic testing.
This study aimed to obtain an experts' consensus on the clinical significance of gene variants in four well-known HRF genes: , , and .
We configured a MOLGENIS web platform to share and analyse pathogenicity classifications of the variants and to manage a consensus-based classification process. Four experts in HRF genetics submitted independent classifications of 858 variants. Classifications were driven to consensus by recruiting four more expert opinions and by targeting discordant classifications in five iterative rounds.
Consensus classification was reached for 804/858 variants (94%). None of the unsolved variants (6%) remained with opposite classifications (eg, pathogenic vs benign). New mutational hotspots were found in all genes. We noted a lower pathogenic variant load and a higher fraction of variants with unknown or unsolved clinical significance in the gene.
Applying a consensus-driven process on the pathogenicity assessment of experts yielded rapid classification of almost all variants of four HRF genes. The high-throughput database will profoundly assist clinicians and geneticists in the diagnosis of HRFs. The configured MOLGENIS platform and consensus evolution protocol are usable for assembly of other variant pathogenicity databases. The MOLGENIS software is available for reuse at http://github.com/molgenis/molgenis; the specific HRF configuration is available at http://molgenis.org/said/. The HRF pathogenicity classifications will be published on the INFEVERS database at https://fmf.igh.cnrs.fr/ISSAID/infevers/.
遗传性复发性发热症(HRF)是一类罕见的炎症性疾病,具有相似的临床症状,可通过抗炎生物药物有效治疗。HRF 的准确诊断严重依赖于基因检测。
本研究旨在就四个知名 HRF 基因( 、 、 、 )中的基因变异的临床意义达成专家共识。
我们构建了一个 MOLGENIS 网络平台,用于共享和分析变异的致病性分类,并管理基于共识的分类过程。四位 HRF 遗传学专家对 858 个变异体进行了独立分类。通过招募另外四位专家的意见,并在五个迭代回合中针对分歧分类进行目标处理,将分类结果推向共识。
达成了 804/858 个变异体(94%)的共识分类。没有一个未解决的变异体(6%)仍存在相反的分类(例如,致病性与良性)。在所有基因中都发现了新的突变热点。我们注意到在 基因中致病性变异体的负荷较低,且具有未知或未解决临床意义的变异体比例较高。
在专家致病性评估中应用共识驱动过程,可快速对四个 HRF 基因的几乎所有变异体进行分类。高通量数据库将极大地帮助临床医生和遗传学家诊断 HRF。配置的 MOLGENIS 平台和共识演化协议可用于组装其他变异体致病性数据库。MOLGENIS 软件可在 http://github.com/molgenis/molgenis 上重复使用;特定的 HRF 配置可在 http://molgenis.org/said/ 上获取。HRF 的致病性分类将在 https://fmf.igh.cnrs.fr/ISSAID/infevers/ 上的 INFEVERS 数据库中发布。