Suppr超能文献

D39中荚膜表达与尿嘧啶代谢之间的相互作用

Interplay Between Capsule Expression and Uracil Metabolism in D39.

作者信息

Carvalho Sandra M, Kloosterman Tomas G, Manzoor Irfan, Caldas José, Vinga Susana, Martinussen Jan, Saraiva Lígia M, Kuipers Oscar P, Neves Ana R

机构信息

Instituto de Tecnologia Química e Biológica NOVA, Universidade Nova de Lisboa, Oeiras, Portugal.

Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.

出版信息

Front Microbiol. 2018 Mar 6;9:321. doi: 10.3389/fmicb.2018.00321. eCollection 2018.

Abstract

Pyrimidine nucleotides play an important role in the biosynthesis of activated nucleotide sugars (NDP-sugars). NDP-sugars are the precursors of structural polysaccharides in bacteria, including capsule, which is a major virulence factor of the human pathogen . In this work, we identified a spontaneous non-reversible mutant of strain D39 that displayed a non-producing capsule phenotype. Whole-genome sequencing analysis of this mutant revealed several non-synonymous single base modifications, including in genes of the synthesis of pyrimidines and in the -10 box of capsule operon promoter (P). By directed mutagenesis we showed that the point mutation in P was solely responsible for the drastic decrease in capsule expression. We also demonstrated that D39 subjected to uracil deprivation shows increased biomass and decreased P activity and capsule amounts. Importantly, P expression is further decreased by mutating the first gene of the synthesis of pyrimidines, . In contrast, the absence of uracil from the culture medium showed no effect on the spontaneous mutant strain. Co-cultivation of the wild-type and the mutant strain indicated a competitive advantage of the spontaneous mutant (non-producing capsule) in medium devoid of uracil. We propose a model in that uracil may act as a signal for the production of different capsule amounts in .

摘要

嘧啶核苷酸在活化核苷酸糖(NDP - 糖)的生物合成中起重要作用。NDP - 糖是细菌中结构多糖的前体,包括荚膜,而荚膜是人类病原体的主要毒力因子。在这项工作中,我们鉴定出菌株D39的一个自发不可逆突变体,其表现出不产生荚膜的表型。对该突变体的全基因组测序分析揭示了几个非同义单碱基修饰,包括嘧啶合成基因以及荚膜操纵子启动子(P)的 - 10框中的修饰。通过定向诱变,我们表明P中的点突变是荚膜表达急剧下降的唯一原因。我们还证明,遭受尿嘧啶剥夺的D39显示出生物量增加、P活性降低和荚膜量减少。重要的是,通过突变嘧啶合成的第一个基因,P的表达进一步降低。相比之下,培养基中缺乏尿嘧啶对自发突变体菌株没有影响。野生型和突变体菌株的共培养表明,自发突变体(不产生荚膜)在缺乏尿嘧啶的培养基中具有竞争优势。我们提出了一个模型,即尿嘧啶可能作为肺炎链球菌中产生不同荚膜量的信号。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3992/5863508/3f86a0edc30d/fmicb-09-00321-g0001.jpg

相似文献

1
Interplay Between Capsule Expression and Uracil Metabolism in D39.
Front Microbiol. 2018 Mar 6;9:321. doi: 10.3389/fmicb.2018.00321. eCollection 2018.
2
A Quorum-Sensing System That Regulates Biofilm Formation and Surface Polysaccharide Production.
mSphere. 2017 Sep 13;2(5). doi: 10.1128/mSphere.00324-17. eCollection 2017 Sep-Oct.
10
Requirement for capsule in colonization by Streptococcus pneumoniae.
Infect Immun. 2001 Jun;69(6):3755-61. doi: 10.1128/IAI.69.6.3755-3761.2001.

引用本文的文献

1
RNA cis-regulators are important for Streptococcus pneumoniae in vivo success.
PLoS Genet. 2024 Mar 5;20(3):e1011188. doi: 10.1371/journal.pgen.1011188. eCollection 2024 Mar.
2
Global transcriptional responses of pneumococcus to human blood components and cerebrospinal fluid.
Front Microbiol. 2022 Dec 21;13:1060583. doi: 10.3389/fmicb.2022.1060583. eCollection 2022.
3
Difluoromethylornithine (DFMO) and AMXT 1501 inhibit capsule biosynthesis in pneumococci.
Sci Rep. 2022 Jul 12;12(1):11804. doi: 10.1038/s41598-022-16007-7.
4
The Effect of Impaired Polyamine Transport on Pneumococcal Transcriptome.
Pathogens. 2021 Oct 14;10(10):1322. doi: 10.3390/pathogens10101322.
5
Inactivation of Transcriptional Regulator FabT Influences Colony Phase Variation of Streptococcus pneumoniae.
mBio. 2021 Aug 31;12(4):e0130421. doi: 10.1128/mBio.01304-21. Epub 2021 Aug 17.
6
Media Matters, Examining Historical and Modern Growth Media and the Experiments They Affect.
Front Cell Infect Microbiol. 2021 Mar 23;11:613623. doi: 10.3389/fcimb.2021.613623. eCollection 2021.
7
SP_0916 Is an Arginine Decarboxylase That Catalyzes the Synthesis of Agmatine, Which Is Critical for Capsule Biosynthesis in .
Front Microbiol. 2020 Sep 18;11:578533. doi: 10.3389/fmicb.2020.578533. eCollection 2020.
8
Experimental Evolution To Identify Selective Pressures during Pneumococcal Colonization.
mSystems. 2020 May 12;5(3):e00352-20. doi: 10.1128/mSystems.00352-20.
9
Exploring metabolic adaptation of Streptococcus pneumoniae to antibiotics.
J Antibiot (Tokyo). 2020 Jul;73(7):441-454. doi: 10.1038/s41429-020-0296-3. Epub 2020 Mar 24.
10
Polyamine Synthesis Effects Capsule Expression by Reduction of Precursors in .
Front Microbiol. 2019 Aug 29;10:1996. doi: 10.3389/fmicb.2019.01996. eCollection 2019.

本文引用的文献

1
Pyruvate Oxidase as a Critical Link between Metabolism and Capsule Biosynthesis in Streptococcus pneumoniae.
PLoS Pathog. 2016 Oct 19;12(10):e1005951. doi: 10.1371/journal.ppat.1005951. eCollection 2016 Oct.
3
Epigenetic Switch Driven by DNA Inversions Dictates Phase Variation in Streptococcus pneumoniae.
PLoS Pathog. 2016 Jul 18;12(7):e1005762. doi: 10.1371/journal.ppat.1005762. eCollection 2016 Jul.
5
Autophosphorylation of the Bacterial Tyrosine-Kinase CpsD Connects Capsule Synthesis with the Cell Cycle in Streptococcus pneumoniae.
PLoS Genet. 2015 Sep 17;11(9):e1005518. doi: 10.1371/journal.pgen.1005518. eCollection 2015 Sep.
7
Bistability in a metabolic network underpins the de novo evolution of colony switching in Pseudomonas fluorescens.
PLoS Biol. 2015 Mar 12;13(3):e1002109. doi: 10.1371/journal.pbio.1002109. eCollection 2015 Mar.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验