Suppr超能文献

基于水不溶性聚(2-羟乙基甲基丙烯酸酯)水凝胶的无定形固体分散体的过饱和度速率和剂量对动力学溶解度曲线的综合影响。

Combined Effects of Supersaturation Rates and Doses on the Kinetic-Solubility Profiles of Amorphous Solid Dispersions Based on Water-Insoluble Poly(2-hydroxyethyl methacrylate) Hydrogels.

机构信息

Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , 144 College Street , Toronto , Ontario M5S 3M2 , Canada.

出版信息

Mol Pharm. 2018 May 7;15(5):2017-2026. doi: 10.1021/acs.molpharmaceut.8b00162. Epub 2018 Apr 5.

Abstract

Under nonsink dissolution conditions, the kinetic-solubility profiles of amorphous solid dispersions (ASDs) based on soluble carriers typically exhibit so-called "spring-and-parachute" concentration-time behaviors. However, the kinetic-solubility profiles of ASDs based on insoluble carriers (including hydrogels) are known to show sustained supersaturation during nonsink dissolution through a matrix-regulated diffusion mechanism by which the supersaturation of the drug is built up gradually and sustained over an extended period without any dissolved polymers acting as crystallization inhibitors. Despite previous findings demonstrating the interplay between supersaturation rates and total doses on the kinetic-solubility profiles of soluble amorphous systems (including ASDs based on dissolution-regulated releases from soluble polymer carriers), the combined effects of supersaturation rates and doses on the kinetic-solubility profiles of ASDs based on diffusion-regulated releases from water-insoluble carriers have not been investigated previously. Thus, the objective of this study is to examine the impacts of total doses and supersaturation-generation rates on the resulting kinetic-solubility profiles of ASDs based on insoluble hydrogel carriers. We employed a previously established ASD-carrier system based on water-insoluble-cross-linked-poly(2-hydroxyethyl methacrylate) (PHEMA)-hydrogel beads and two poorly water soluble model drugs: the weakly acidic indomethacin (IND) and the weakly basic posaconazole (PCZ). Our results show clearly for the first time that by using the smallest-particle-size fraction and a high dose (i.e., above the critical dose), it is indeed possible to significantly shorten the duration of sustained supersaturation in the kinetic-solubility profile of an ASD based on a water-insoluble hydrogel carrier, such that it resembles the spring-and-parachute dissolution profiles normally associated with ASDs based on soluble carriers. This generates sufficiently rapid initial supersaturation buildup above the critical supersaturation, resulting in more rapid precipitation. Above this smallest-particle-size range, the matrix-diffusion-regulated nonlinear rate of drug release gets slower, which results in a more modest rate of supersaturation buildup, leading to a maximum supersaturation below the critical-supersaturation level without appreciable precipitation. The area-under-the-curve (AUC) values of the in vitro kinetic-solubility concentration-time profiles were used to correlate the corresponding trends in dissolution enhancement. There are observed monotonic increases in AUC values with increasing particle sizes for high-dose ASDs based on water-insoluble hydrogel matrixes, as opposed to the previously reported AUC maxima at some intermediate supersaturation rates or doses in soluble amorphous systems, whereas in the case of low-dose ASDs (i.e., below the critical dose levels), crystallization would be negligible, leading to sustained supersaturation with all particle sizes (i.e., eventually reaching the same maximum supersaturation) and the smallest particle size reaching the maximum supersaturation the fastest. As a result, the smallest particle sizes yield the largest AUC values in the case of low-dose ASDs based on water-insoluble hydrogel matrixes. In addition to probing the interplay between the supersaturation-generation rates and total doses in ASDs based on insoluble hydrogel carriers, our results further support the fact that through either increasing the hydrogel-particle size or lowering the total dose to achieve maximum supersaturation still below the critical-supersaturation level, it is possible to avoid drug precipitation so as to maintain sustained supersaturation.

摘要

在非溶蚀性溶解条件下,基于可溶性载体的无定形固体分散体(ASD)的动力学溶解度曲线通常表现出所谓的“弹簧和降落伞”浓度-时间行为。然而,据了解,基于不溶性载体(包括水凝胶)的 ASD 的动力学溶解度曲线通过基质调节的扩散机制在非溶蚀性溶解过程中显示出持续的过饱和度,通过该机制,药物的过饱和度逐渐建立并持续延长一段时间,而没有任何溶解聚合物作为结晶抑制剂。尽管先前的研究结果表明,在可溶性无定形系统(包括基于溶解调节释放的可溶性聚合物载体的 ASD)的动力学溶解度曲线中,过饱和度速率和总剂量之间存在相互作用,但尚未研究过饱和度速率和剂量对基于扩散调节释放的 ASD 的动力学溶解度曲线的综合影响。来自水不溶性载体。因此,本研究的目的是研究总剂量和过饱和度生成速率对基于不溶性水凝胶载体的 ASD 的动力学溶解度曲线的影响。我们采用了先前建立的基于水不溶性交联聚(2-羟乙基甲基丙烯酸酯)(PHEMA)水凝胶珠的 ASD-载体系统和两种水溶性差的模型药物:弱酸性吲哚美辛(IND)和弱碱性泊沙康唑(PCZ)。我们的结果首次清楚地表明,通过使用最小粒径和高剂量(即高于临界剂量),确实可以显著缩短基于水不溶性水凝胶载体的 ASD 的持续过饱和度在动力学溶解度曲线中的持续时间,使其类似于通常与基于可溶性载体的 ASD 相关的弹簧和降落伞溶解曲线。这会在临界过饱和度之上产生足够快的初始过饱和度建立,从而导致更快速的沉淀。在该最小粒径范围之上,药物释放的基质扩散调节非线性速率变得更慢,导致过饱和度建立速度更慢,导致最大过饱和度低于临界过饱和度水平而没有明显的沉淀。体外动力学溶解度浓度-时间曲线的曲线下面积(AUC)值用于相关溶解增强的相应趋势。对于基于水不溶性水凝胶基质的高剂量 ASD,观察到 AUC 值随粒径的增加呈单调增加,而对于可溶性无定形系统中的先前报道的 AUC 最大值,在某些中间过饱和度速率或剂量下,而对于低剂量 ASD(即低于临界剂量水平),结晶可以忽略不计,导致所有粒径的持续过饱和度(即最终达到相同的最大过饱和度)和最小粒径最快达到最大过饱和度。结果,在基于水不溶性水凝胶基质的低剂量 ASD 中,最小粒径产生最大的 AUC 值。除了研究基于不溶性水凝胶载体的 ASD 中过饱和度生成速率和总剂量之间的相互作用外,我们的结果还进一步支持以下事实,即通过增加水凝胶颗粒大小或降低总剂量以达到仍低于临界过饱和度水平的最大过饱和度,可以避免药物沉淀以维持持续过饱和度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验