Department of Physiology, Jichi Medical University, School of Medicine, Japan.
Department of Physiology, Jichi Medical University, School of Medicine, Japan.
Biochem Biophys Res Commun. 2018 May 15;499(3):618-625. doi: 10.1016/j.bbrc.2018.03.199. Epub 2018 Apr 9.
Endogenous GLP-1 and GLP-1 receptor agonists (GLP-1RAs) regulate glucose metabolism via common and distinct mechanisms. Postprandial release of GLP-1 is modest and it is degraded by DPP-4 within 2 min, and hence it cannot enter the brain in substantial amount. In contrast, DPP-4-resistant GLP-1RAs are administered at 10 times higher concentration than endogenous GLP-1 level, which enables them to reach several brain regions including ARC and AP, the areas implicated in glucose metabolism. Hence, some of the effects of GLP-1RAs observed clinically and experimentally, including pancreatic β-cell proliferation, are thought to involve the brain. However, the effects of centrally acting GLP-1/GLP-1RAs on glucose metabolism and underlying neural mechanism are unclear. This study aimed to establish the link of central GLP-1/GLP-1RA action to pancreatic β-cell proliferation. Both subcutaneous (SC) and intracerebroventricular (ICV) injections of liraglutide increased the number of pancreatic β-cells expressing Ki67 and PCNA, proliferation markers, in C57BL/6J mice. This effect was induced by single ICV administration of liraglutide at relatively low dose that was incapable of suppressing food intake. These SC and ICV liraglutide-induced effects were inhibited by 50% and 70%, respectively, by pretreatment with atropine, a muscarinic receptor blocker. ICV liraglutide induced c-Fos expression in the area postrema (AP), nucleus tractus solitaries (NTS), and dorsal motor nucleus of the vagus (DMX) of the brain stem. These results demonstrate that central action of liraglutide induces pancreatic β-cell proliferation via the pathway involving the brain stem AP/NTS/DMX area and vagus nerve. This route is highly sensitive to GLP-1/GLP-1RA. Hence, this brain-pancreatic β-cell pathway may operate in type 2 diabetic patients treated with GLP-RAs and serve to counteract the reduction of β-cell mass.
内源性 GLP-1 和 GLP-1 受体激动剂 (GLP-1RAs) 通过共同和不同的机制调节葡萄糖代谢。GLP-1 在餐后释放量适中,并且在 2 分钟内被 DPP-4 降解,因此它不能以大量进入大脑。相比之下,DPP-4 抗性 GLP-1RAs 的给药浓度比内源性 GLP-1 水平高 10 倍,这使它们能够到达包括 ARC 和 AP 在内的多个脑区,这些脑区与葡萄糖代谢有关。因此,一些 GLP-1RAs 在临床上和实验中观察到的作用,包括胰岛β细胞增殖,被认为涉及大脑。然而,中枢作用的 GLP-1/GLP-1RA 对葡萄糖代谢和潜在的神经机制的影响尚不清楚。本研究旨在建立中枢 GLP-1/GLP-1RA 作用与胰岛β细胞增殖之间的联系。在 C57BL/6J 小鼠中,皮下 (SC) 和脑室内 (ICV) 注射利拉鲁肽均可增加表达 Ki67 和 PCNA 的胰岛β细胞数量,这两种标志物均为增殖标志物。这种作用是由单次 ICV 给予利拉鲁肽引起的,剂量相对较低,不足以抑制进食。SC 和 ICV 利拉鲁肽诱导的这些作用分别被 50%和 70%的阿托品预处理所抑制,阿托品是一种毒蕈碱受体阻滞剂。ICV 利拉鲁肽诱导脑干中的后肠 (AP)、孤束核 (NTS) 和迷走神经背核 (DMX) 中的 c-Fos 表达。这些结果表明,利拉鲁肽的中枢作用通过涉及脑干 AP/NTS/DMX 区域和迷走神经的途径诱导胰岛β细胞增殖。这条途径对 GLP-1/GLP-1RA 非常敏感。因此,这条脑-胰岛β细胞途径可能在接受 GLP-RA 治疗的 2 型糖尿病患者中起作用,有助于对抗β细胞数量的减少。