Suppr超能文献

转录组分析揭示了达尔大鼠外髓质中由肾灌注压调节的炎症和代谢途径。

Transcriptomic analysis reveals inflammatory and metabolic pathways that are regulated by renal perfusion pressure in the outer medulla of Dahl-S rats.

机构信息

Department of Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin.

Center of Systems Molecular Medicine, Medical College of Wisconsin , Milwaukee, Wisconsin.

出版信息

Physiol Genomics. 2018 Jun 1;50(6):440-447. doi: 10.1152/physiolgenomics.00034.2018. Epub 2018 Mar 30.

Abstract

Studies exploring the development of hypertension have traditionally been unable to distinguish which of the observed changes are underlying causes from those that are a consequence of elevated blood pressure. In this study, a custom-designed servo-control system was utilized to precisely control renal perfusion pressure to the left kidney continuously during the development of hypertension in Dahl salt-sensitive rats. In this way, we maintained the left kidney at control blood pressure while the right kidney was exposed to hypertensive pressures. As each kidney was exposed to the same circulating factors, differences between them represent changes induced by pressure alone. RNA sequencing analysis identified 1,613 differently expressed genes affected by renal perfusion pressure. Three pathway analysis methods were applied, one a novel approach incorporating arterial pressure as an input variable allowing a more direct connection between the expression of genes and pressure. The statistical analysis proposed several novel pathways by which pressure affects renal physiology. We confirmed the effects of pressure on p-Jnk regulation, in which the hypertensive medullas show increased p-Jnk/Jnk ratios relative to the left (0.79 ± 0.11 vs. 0.53 ± 0.10, P < 0.01, n = 8). We also confirmed pathway predictions of mitochondrial function, in which the respiratory control ratio of hypertensive vs. control mitochondria are significantly reduced (7.9 ± 1.2 vs. 10.4 ± 1.8, P < 0.01, n = 6) and metabolomic profile, in which 14 metabolites differed significantly between hypertensive and control medullas ( P < 0.05, n = 5). These findings demonstrate that subtle differences in the transcriptome can be used to predict functional changes of the kidney as a consequence of pressure elevation.

摘要

传统上,探索高血压发展的研究一直无法区分观察到的变化中哪些是潜在的原因,哪些是血压升高的结果。在这项研究中,我们使用定制的伺服控制系统,在 Dahl 盐敏感型大鼠高血压发展过程中,持续精确地控制左肾的肾灌注压。通过这种方式,我们在维持左肾控制血压的同时,使右肾暴露于高血压压力下。由于每个肾脏都暴露在相同的循环因素下,它们之间的差异代表仅由压力引起的变化。RNA 测序分析确定了 1613 个受肾灌注压影响的差异表达基因。我们应用了三种途径分析方法,其中一种是将动脉压作为输入变量的新方法,使基因表达与压力之间的连接更加直接。统计分析提出了几种压力影响肾脏生理学的新途径。我们证实了压力对 p-Jnk 调节的影响,其中高血压髓质相对于左肾(0.79±0.11 对 0.53±0.10,P<0.01,n=8)表现出增加的 p-Jnk/Jnk 比值。我们还证实了途径预测的线粒体功能,其中高血压与对照线粒体的呼吸控制比显著降低(7.9±1.2 对 10.4±1.8,P<0.01,n=6)和代谢组学谱,其中 14 种代谢物在高血压和对照髓质之间差异显著(P<0.05,n=5)。这些发现表明,转录组中的细微差异可用于预测肾脏因压力升高而导致的功能变化。

相似文献

1
Transcriptomic analysis reveals inflammatory and metabolic pathways that are regulated by renal perfusion pressure in the outer medulla of Dahl-S rats.
Physiol Genomics. 2018 Jun 1;50(6):440-447. doi: 10.1152/physiolgenomics.00034.2018. Epub 2018 Mar 30.
2
Characterization of biological pathways associated with a 1.37 Mbp genomic region protective of hypertension in Dahl S rats.
Physiol Genomics. 2014 Jun 1;46(11):398-410. doi: 10.1152/physiolgenomics.00179.2013. Epub 2014 Apr 8.
3
Insights into Dahl salt-sensitive hypertension revealed by temporal patterns of renal medullary gene expression.
Physiol Genomics. 2003 Feb 6;12(3):229-37. doi: 10.1152/physiolgenomics.00089.2002.
4
Mitochondrial Dysfunction and Altered Renal Metabolism in Dahl Salt-Sensitive Rats.
Kidney Blood Press Res. 2017;42(3):587-597. doi: 10.1159/000479846. Epub 2017 Sep 19.
5
Pressure natriuresis and cortical and papillary blood flow in inbred Dahl rats.
Am J Physiol. 1991 Sep;261(3 Pt 2):R595-602. doi: 10.1152/ajpregu.1991.261.3.R595.
7
Renal medullary genes in salt-sensitive hypertension: a chromosomal substitution and cDNA microarray study.
Physiol Genomics. 2002 Feb 28;8(2):139-49. doi: 10.1152/physiolgenomics.00083.2001.
9
Renal medullary 11 beta-hydroxysteroid dehydrogenase type 1 in Dahl salt-sensitive hypertension.
Physiol Genomics. 2008 Dec 12;36(1):52-8. doi: 10.1152/physiolgenomics.90283.2008. Epub 2008 Sep 30.
10
Mesenchymal stem cell transplantation inhibited high salt-induced activation of the NLRP3 inflammasome in the renal medulla in Dahl S rats.
Am J Physiol Renal Physiol. 2016 Apr 1;310(7):F621-F627. doi: 10.1152/ajprenal.00344.2015. Epub 2016 Jan 13.

引用本文的文献

1
Long Noncoding RNA MALAT1: Salt-Sensitive Hypertension.
Int J Mol Sci. 2024 May 18;25(10):5507. doi: 10.3390/ijms25105507.
2
Transcriptomic changes in glomeruli in response to a high salt challenge in the Dahl SS rat.
Physiol Genomics. 2024 Jan 1;56(1):98-111. doi: 10.1152/physiolgenomics.00075.2023. Epub 2023 Nov 13.
3
T-cells regulate albuminuria but not hypertension, renal histology, or the medullary transcriptome in the Dahl SSCD247 rat.
Am J Physiol Renal Physiol. 2024 Jan 1;326(1):F95-F104. doi: 10.1152/ajprenal.00229.2023. Epub 2023 Nov 2.
4
Brown-Norway chromosome 1 mitigates the upregulation of proinflammatory pathways in mTAL cells and subsequent age-related CKD in Dahl SS/JrHsdMcwi rats.
Am J Physiol Renal Physiol. 2023 Feb 1;324(2):F193-F210. doi: 10.1152/ajprenal.00145.2022. Epub 2022 Dec 8.
6
Renal Perfusion Pressure Determines Infiltration of Leukocytes in the Kidney of Rats With Angiotensin II-Induced Hypertension.
Hypertension. 2020 Sep;76(3):849-858. doi: 10.1161/HYPERTENSIONAHA.120.15295. Epub 2020 Aug 3.
7
Renal Glomerular Mitochondria Function in Salt-Sensitive Hypertension.
Front Physiol. 2020 Feb 4;10:1588. doi: 10.3389/fphys.2019.01588. eCollection 2019.
8
Transcriptome Sequencing to Detect the Potential Role of Long Noncoding RNAs in Salt-Sensitive Hypertensive Rats.
Biomed Res Int. 2019 Dec 6;2019:2816959. doi: 10.1155/2019/2816959. eCollection 2019.

本文引用的文献

1
Developing Tools for Analysis of Renal Genomic Data: An Invitation to Participate.
J Am Soc Nephrol. 2017 Dec;28(12):3438-3440. doi: 10.1681/ASN.2017070811. Epub 2017 Oct 5.
2
Elevation of fumarase attenuates hypertension and can result from a nonsynonymous sequence variation or increased expression depending on rat strain.
Physiol Genomics. 2017 Sep 1;49(9):496-504. doi: 10.1152/physiolgenomics.00063.2017. Epub 2017 Jul 28.
3
Increased Perfusion Pressure Drives Renal T-Cell Infiltration in the Dahl Salt-Sensitive Rat.
Hypertension. 2017 Sep;70(3):543-551. doi: 10.1161/HYPERTENSIONAHA.117.09208. Epub 2017 Jul 10.
4
Malate and Aspartate Increase L-Arginine and Nitric Oxide and Attenuate Hypertension.
Cell Rep. 2017 May 23;19(8):1631-1639. doi: 10.1016/j.celrep.2017.04.071.
5
Kidney-Specific Reduction of Oxidative Phosphorylation Genes Derived from Spontaneously Hypertensive Rat.
PLoS One. 2015 Aug 26;10(8):e0136441. doi: 10.1371/journal.pone.0136441. eCollection 2015.
6
Reactive oxygen species as important determinants of medullary flow, sodium excretion, and hypertension.
Am J Physiol Renal Physiol. 2015 Feb 1;308(3):F179-97. doi: 10.1152/ajprenal.00455.2014. Epub 2014 Oct 29.
7
Analysis of metabolites in plasma reveals distinct metabolic features between Dahl salt-sensitive rats and consomic SS.13(BN) rats.
Biochem Biophys Res Commun. 2014 Jul 18;450(1):863-9. doi: 10.1016/j.bbrc.2014.06.089. Epub 2014 Jun 24.
8
Ultrastructure of mitochondria and the endoplasmic reticulum in renal tubules of Dahl salt-sensitive rats.
Am J Physiol Renal Physiol. 2014 May 15;306(10):F1190-7. doi: 10.1152/ajprenal.00073.2014. Epub 2014 Apr 2.
9
Base-resolution maps of 5-methylcytosine and 5-hydroxymethylcytosine in Dahl S rats: effect of salt and genomic sequence.
Hypertension. 2014 Apr;63(4):827-38. doi: 10.1161/HYPERTENSIONAHA.113.02637. Epub 2014 Jan 13.
10
Causal analysis approaches in Ingenuity Pathway Analysis.
Bioinformatics. 2014 Feb 15;30(4):523-30. doi: 10.1093/bioinformatics/btt703. Epub 2013 Dec 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验