Department of General, Visceral and Transplantation Surgery, Heidelberg University, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.
Division of Medical and Biological Informatics, German Cancer Research Center, Heidelberg, Germany.
Surg Endosc. 2018 Jun;32(6):2958-2967. doi: 10.1007/s00464-018-6151-y. Epub 2018 Mar 30.
BACKGROUND: Augmented reality (AR) systems are currently being explored by a broad spectrum of industries, mainly for improving point-of-care access to data and images. Especially in surgery and especially for timely decisions in emergency cases, a fast and comprehensive access to images at the patient bedside is mandatory. Currently, imaging data are accessed at a distance from the patient both in time and space, i.e., at a specific workstation. Mobile technology and 3-dimensional (3D) visualization of radiological imaging data promise to overcome these restrictions by making bedside AR feasible. METHODS: In this project, AR was realized in a surgical setting by fusing a 3D-representation of structures of interest with live camera images on a tablet computer using marker-based registration. The intent of this study was to focus on a thorough evaluation of AR. Feasibility, robustness, and accuracy were thus evaluated consecutively in a phantom model and a porcine model. Additionally feasibility was evaluated in one male volunteer. RESULTS: In the phantom model (n = 10), AR visualization was feasible in 84% of the visualization space with high accuracy (mean reprojection error ± standard deviation (SD): 2.8 ± 2.7 mm; 95th percentile = 6.7 mm). In a porcine model (n = 5), AR visualization was feasible in 79% with high accuracy (mean reprojection error ± SD: 3.5 ± 3.0 mm; 95th percentile = 9.5 mm). Furthermore, AR was successfully used and proved feasible within a male volunteer. CONCLUSIONS: Mobile, real-time, and point-of-care AR for clinical purposes proved feasible, robust, and accurate in the phantom, animal, and single-trial human model shown in this study. Consequently, AR following similar implementation proved robust and accurate enough to be evaluated in clinical trials assessing accuracy, robustness in clinical reality, as well as integration into the clinical workflow. If these further studies prove successful, AR might revolutionize data access at patient bedside.
背景:增强现实(AR)系统目前正被广泛的行业所探索,主要用于改善即时护理获取数据和图像的方式。特别是在手术中,特别是在紧急情况下需要及时决策时,快速而全面地获取患者床边的图像是强制性的。目前,在时间和空间上都需要从患者身上获取成像数据,也就是说,需要在特定的工作站上获取。移动技术和放射影像学数据的三维(3D)可视化有望通过使床边 AR 成为可能来克服这些限制。
方法:在这个项目中,通过使用基于标记的配准将感兴趣的结构的 3D 表示与平板电脑上的实时摄像机图像融合,在手术环境中实现了 AR。本研究的目的是集中评估 AR。因此,在体模和猪模型中连续评估了可行性、鲁棒性和准确性。此外,还在一名男性志愿者中评估了可行性。
结果:在体模模型(n=10)中,AR 可视化在 84%的可视化空间中具有较高的准确性(平均重投影误差±标准差(SD):2.8±2.7mm;95%置信区间(CI):6.7mm)。在猪模型(n=5)中,AR 可视化在 79%的情况下具有较高的准确性(平均重投影误差±SD:3.5±3.0mm;95%CI:9.5mm)。此外,AR 在一名男性志愿者中成功使用并证明是可行的。
结论:本研究中展示的体模、动物和单例人体模型表明,用于临床目的的移动、实时和即时护理 AR 是可行的、鲁棒的和准确的。因此,按照类似的实施方式进行的 AR 被证明具有足够的鲁棒性和准确性,可以在评估准确性、临床现实中的鲁棒性以及与临床工作流程集成的临床试验中进行评估。如果这些进一步的研究取得成功,AR 可能会彻底改变患者床边的数据访问方式。
Int J Comput Assist Radiol Surg. 2019-3-1
Surg Endosc. 2014-2-1
Int J Comput Assist Radiol Surg. 2017-8-5
Int J Oral Maxillofac Implants. 2018
Int J Oral Maxillofac Surg. 2024-11
Cardiovasc Intervent Radiol. 2025-2
Bioengineering (Basel). 2023-5-20
Healthcare (Basel). 2022-9-21
Cardiovasc Intervent Radiol. 2020-1-8
Stereotact Funct Neurosurg. 2014
J Thorac Cardiovasc Surg. 2013-9
Int J Comput Assist Radiol Surg. 2013-4-16
Int J Comput Assist Radiol Surg. 2013-3-23