Pisarchik A N, Jaimes-Reátegui R, García-Vellisca M A
Center for Biomedical Technology, Technical University of Madrid, Pozuelo de Alarcon 28223, Spain.
Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos del Moreno 47460, Mexico.
Chaos. 2018 Mar;28(3):033605. doi: 10.1063/1.5003091.
The role of asymmetry in electrical synaptic connection between two neuronal oscillators is studied in the Hindmarsh-Rose model. We demonstrate that the asymmetry induces multistability in spiking dynamics of the coupled neuronal oscillators. The coexistence of at least three attractors, one chaotic and two periodic orbits, for certain coupling strengths is demonstrated with time series, phase portraits, bifurcation diagrams, basins of attraction of the coexisting states, Lyapunov exponents, and standard deviations of peak amplitudes and interspike intervals. The experimental results with analog electronic circuits are in good agreement with the results of numerical simulations.
在Hindmarsh-Rose模型中研究了不对称性在两个神经元振荡器之间电突触连接中的作用。我们证明,这种不对称性在耦合神经元振荡器的放电动力学中诱导了多重稳定性。通过时间序列、相图、分岔图、共存状态的吸引子盆地、李雅普诺夫指数以及峰值幅度和峰间间隔的标准差,证明了对于某些耦合强度,至少存在三个吸引子共存,一个混沌吸引子和两个周期轨道。模拟电子电路的实验结果与数值模拟结果非常吻合。