Barrio Roberto, Martínez M Angeles, Serrano Sergio, Shilnikov Andrey
Computational Dynamics Group, Departamento de Matemática Aplicada, GME and IUMA, Universidad de Zaragoza, E-50009 Zaragoza, Spain.
Computational Dynamics Group, GME, Universidad de Zaragoza, E-50009 Zaragoza, Spain.
Chaos. 2014 Jun;24(2):023128. doi: 10.1063/1.4882171.
We study a plethora of chaotic phenomena in the Hindmarsh-Rose neuron model with the use of several computational techniques including the bifurcation parameter continuation, spike-quantification, and evaluation of Lyapunov exponents in bi-parameter diagrams. Such an aggregated approach allows for detecting regions of simple and chaotic dynamics, and demarcating borderlines-exact bifurcation curves. We demonstrate how the organizing centers-points corresponding to codimension-two homoclinic bifurcations-along with fold and period-doubling bifurcation curves structure the biparametric plane, thus forming macro-chaotic regions of onion bulb shapes and revealing spike-adding cascades that generate micro-chaotic structures due to the hysteresis.
我们运用多种计算技术,包括分岔参数延拓、尖峰量化以及在双参数图中评估李雅普诺夫指数,来研究 Hindmarsh-Rose 神经元模型中的大量混沌现象。这种综合方法能够检测简单动力学和混沌动力学区域,并划定边界——精确的分岔曲线。我们展示了对应于余维二次同宿分岔的组织中心以及折叠和倍周期分岔曲线如何构建双参数平面,从而形成洋葱头形状的宏观混沌区域,并揭示由于滞后现象产生微混沌结构的尖峰添加级联。