Laboratory of Engineering Thermodynamics, University of Kaiserslautern, Kaiserslautern D-67663, Germany.
ROM, Digitalization in Research and Development, BASF SE, Ludwigshafen D-67056, Germany.
J Chem Phys. 2018 Mar 28;148(12):124702. doi: 10.1063/1.5022231.
A new method for predicting homogeneous bubble nucleation rates of pure compounds from vapor-liquid equilibrium (VLE) data is presented. It combines molecular dynamics simulation on the one side with density gradient theory using an equation of state (EOS) on the other. The new method is applied here to predict bubble nucleation rates in metastable liquid carbon dioxide (CO). The molecular model of CO is taken from previous work of our group. PC-SAFT is used as an EOS. The consistency between the molecular model and the EOS is achieved by adjusting the PC-SAFT parameters to VLE data obtained from the molecular model. The influence parameter of density gradient theory is fitted to the surface tension of the molecular model. Massively parallel molecular dynamics simulations are performed close to the spinodal to compute bubble nucleation rates. From these simulations, the kinetic prefactor of the hybrid nucleation theory is estimated, whereas the nucleation barrier is calculated from density gradient theory. This enables the extrapolation of molecular simulation data to the whole metastable range including technically relevant densities. The results are tested against available experimental data and found to be in good agreement. The new method does not suffer from typical deficiencies of classical nucleation theory concerning the thermodynamic barrier at the spinodal and the bubble size dependence of surface tension, which is typically neglected in classical nucleation theory. In addition, the density in the center of critical bubbles and their surface tension is determined as a function of their radius. The usual linear Tolman correction to the capillarity approximation is found to be invalid.
本文提出了一种从汽液平衡(VLE)数据预测纯物质均相气泡成核速率的新方法。该方法结合了分子动力学模拟,另一方面结合了使用状态方程(EOS)的密度梯度理论。这里新方法用于预测亚稳液体二氧化碳(CO)中的气泡成核速率。CO 的分子模型取自我们小组以前的工作。PC-SAFT 用作 EOS。通过调整 PC-SAFT 参数以适应从分子模型获得的 VLE 数据,实现了分子模型和 EOS 之间的一致性。密度梯度理论的影响参数拟合到分子模型的表面张力。在接近旋节线的位置进行大规模并行分子动力学模拟,以计算气泡成核速率。从这些模拟中,估计了混合成核理论的动力学因子,而成核势垒则由密度梯度理论计算。这使得能够将分子模拟数据外推到整个亚稳范围,包括技术相关的密度。结果与可用的实验数据进行了比较,发现吻合良好。新方法没有经典成核理论的典型缺陷,例如旋节线上的热力学势垒和表面张力对气泡尺寸的依赖性,这些在经典成核理论中通常被忽略。此外,作为其半径的函数,确定了临界气泡中心的密度及其表面张力。发现通常用于毛细近似的 Tolman 线性修正无效。