Suppr超能文献

利用与酵母表面展示相结合的深度测序来表征蛋白质-蛋白质相互作用

Characterizing Protein-Protein Interactions Using Deep Sequencing Coupled to Yeast Surface Display.

作者信息

Medina-Cucurella Angelica V, Whitehead Timothy A

机构信息

Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA.

Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI, USA.

出版信息

Methods Mol Biol. 2018;1764:101-121. doi: 10.1007/978-1-4939-7759-8_7.

Abstract

In this chapter, we discuss a method to determine the affinity and specificity of nearly all single-point mutants for a full-length protein binder. This method combines deep sequencing, comprehensive mutagenesis, yeast surface display, and fluorescence-activated cell sorting. This approach has been used to study sequence-function relationships for protein-protein interactions. The data can be used to determine the fine conformational epitope on the protein binder.

摘要

在本章中,我们讨论一种用于确定几乎所有单点突变体与全长蛋白质结合剂的亲和力和特异性的方法。该方法结合了深度测序、全面诱变、酵母表面展示和荧光激活细胞分选。此方法已被用于研究蛋白质-蛋白质相互作用的序列-功能关系。这些数据可用于确定蛋白质结合剂上的精细构象表位。

相似文献

1
Characterizing Protein-Protein Interactions Using Deep Sequencing Coupled to Yeast Surface Display.
Methods Mol Biol. 2018;1764:101-121. doi: 10.1007/978-1-4939-7759-8_7.
2
Conformation-dependent epitopes recognized by prion protein antibodies probed using mutational scanning and deep sequencing.
J Mol Biol. 2015 Jan 30;427(2):328-40. doi: 10.1016/j.jmb.2014.10.024. Epub 2014 Nov 7.
3
Epitope Mapping Using Yeast Display and Next Generation Sequencing.
Methods Mol Biol. 2018;1785:89-118. doi: 10.1007/978-1-4939-7841-0_7.
4
Rapid fine conformational epitope mapping using comprehensive mutagenesis and deep sequencing.
J Biol Chem. 2015 Oct 30;290(44):26457-70. doi: 10.1074/jbc.M115.676635. Epub 2015 Aug 20.
6
Precise and efficient antibody epitope determination through library design, yeast display and next-generation sequencing.
J Mol Biol. 2015 Mar 27;427(6 Pt B):1513-1534. doi: 10.1016/j.jmb.2014.09.020. Epub 2014 Oct 2.
7
Mapping Protein Binding Sites and Conformational Epitopes Using Cysteine Labeling and Yeast Surface Display.
Structure. 2017 Mar 7;25(3):395-406. doi: 10.1016/j.str.2016.12.016. Epub 2017 Jan 26.
8
Discontinuous Epitope Mapping of Antibodies Using Bacterial Cell Surface Display of Folded Domains.
Methods Mol Biol. 2018;1785:159-183. doi: 10.1007/978-1-4939-7841-0_11.
9
Epitope-Specific Binder Design by Yeast Surface Display.
Methods Mol Biol. 2015;1319:143-54. doi: 10.1007/978-1-4939-2748-7_7.

引用本文的文献

1
Computational design of dynamic biosensors for emerging synthetic opioids.
bioRxiv. 2025 May 17:2025.05.15.654300. doi: 10.1101/2025.05.15.654300.
2
Unusually Broad-spectrum small-molecule sensing using a single protein scaffold.
bioRxiv. 2025 May 15:2025.05.15.654352. doi: 10.1101/2025.05.15.654352.
3
Retrospective SARS-CoV-2 human antibody development trajectories are largely sparse and permissive.
Proc Natl Acad Sci U S A. 2025 Jan 28;122(4):e2412787122. doi: 10.1073/pnas.2412787122. Epub 2025 Jan 22.
4
An integrated technology for quantitative wide mutational scanning of human antibody Fab libraries.
Nat Commun. 2024 May 10;15(1):3974. doi: 10.1038/s41467-024-48072-z.
5
Enhanced T cell receptor specificity through framework engineering.
Front Immunol. 2024 Mar 12;15:1345368. doi: 10.3389/fimmu.2024.1345368. eCollection 2024.
6
An integrated technology for quantitative wide mutational scanning of human antibody Fab libraries.
bioRxiv. 2024 Jan 16:2024.01.16.575852. doi: 10.1101/2024.01.16.575852.
7
Protein engineering via sequence-performance mapping.
Cell Syst. 2023 Aug 16;14(8):656-666. doi: 10.1016/j.cels.2023.06.009. Epub 2023 Jul 25.
8
Large-scale antibody immune response mapping of splenic B cells and bone marrow plasma cells in a transgenic mouse model.
Front Immunol. 2023 Jun 5;14:1137069. doi: 10.3389/fimmu.2023.1137069. eCollection 2023.
9
Mapping monoclonal anti-SARS-CoV-2 antibody repertoires against diverse coronavirus antigens.
Front Immunol. 2022 Sep 2;13:977064. doi: 10.3389/fimmu.2022.977064. eCollection 2022.
10
Facile Assembly of Combinatorial Mutagenesis Libraries Using Nicking Mutagenesis.
Methods Mol Biol. 2022;2461:85-109. doi: 10.1007/978-1-0716-2152-3_6.

本文引用的文献

1
Trade-offs between enzyme fitness and solubility illuminated by deep mutational scanning.
Proc Natl Acad Sci U S A. 2017 Feb 28;114(9):2265-2270. doi: 10.1073/pnas.1614437114. Epub 2017 Feb 14.
3
Plasmid-based one-pot saturation mutagenesis.
Nat Methods. 2016 Nov;13(11):928-930. doi: 10.1038/nmeth.4029. Epub 2016 Oct 10.
5
Rapid fine conformational epitope mapping using comprehensive mutagenesis and deep sequencing.
J Biol Chem. 2015 Oct 30;290(44):26457-70. doi: 10.1074/jbc.M115.676635. Epub 2015 Aug 20.
6
High-resolution sequence-function mapping of full-length proteins.
PLoS One. 2015 Mar 19;10(3):e0118193. doi: 10.1371/journal.pone.0118193. eCollection 2015.
7
Conformation-dependent epitopes recognized by prion protein antibodies probed using mutational scanning and deep sequencing.
J Mol Biol. 2015 Jan 30;427(2):328-40. doi: 10.1016/j.jmb.2014.10.024. Epub 2014 Nov 7.
8
Precise and efficient antibody epitope determination through library design, yeast display and next-generation sequencing.
J Mol Biol. 2015 Mar 27;427(6 Pt B):1513-1534. doi: 10.1016/j.jmb.2014.09.020. Epub 2014 Oct 2.
9
Deep mutational scanning: a new style of protein science.
Nat Methods. 2014 Aug;11(8):801-7. doi: 10.1038/nmeth.3027.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验