Suppr超能文献

一种用于人类抗体Fab文库定量广泛突变扫描的集成技术。

An integrated technology for quantitative wide mutational scanning of human antibody Fab libraries.

作者信息

Petersen Brian M, Kirby Monica B, Chrispens Karson M, Irvin Olivia M, Strawn Isabell K, Haas Cyrus M, Walker Alexis M, Baumer Zachary T, Ulmer Sophia A, Ayala Edgardo, Rhodes Emily R, Guthmiller Jenna J, Steiner Paul J, Whitehead Timothy A

机构信息

Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80305, USA.

Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.

出版信息

bioRxiv. 2024 Jan 16:2024.01.16.575852. doi: 10.1101/2024.01.16.575852.

Abstract

Antibodies are engineerable quantities in medicine. Learning antibody molecular recognition would enable the design of high affinity binders against nearly any proteinaceous surface. Yet, publicly available experiment antibody sequence-binding datasets may not contain the mutagenic, antigenic, or antibody sequence diversity necessary for deep learning approaches to capture molecular recognition. In part, this is because limited experimental platforms exist for assessing quantitative and simultaneous sequence-function relationships for multiple antibodies. Here we present MAGMA-seq, an integrated technology that combines multiple antigens and multiple antibodies and determines quantitative biophysical parameters using deep sequencing. We demonstrate MAGMA-seq on two pooled libraries comprising mutants of ten different human antibodies spanning light chain gene usage, CDR H3 length, and antigenic targets. We demonstrate the comprehensive mapping of potential antibody development pathways, sequence-binding relationships for multiple antibodies simultaneously, and identification of paratope sequence determinants for binding recognition for broadly neutralizing antibodies (bnAbs). MAGMA-seq enables rapid and scalable antibody engineering of multiple lead candidates because it can measure binding for mutants of many given parental antibodies in a single experiment.

摘要

抗体在医学领域是可进行工程改造的对象。了解抗体分子识别将有助于设计针对几乎任何蛋白质表面的高亲和力结合剂。然而,公开可用的实验性抗体序列-结合数据集可能不包含深度学习方法捕捉分子识别所需的诱变、抗原或抗体序列多样性。部分原因在于,用于评估多种抗体的定量且同时的序列-功能关系的实验平台有限。在此,我们展示了MAGMA-seq,这是一种整合技术,它结合了多种抗原和多种抗体,并使用深度测序来确定定量生物物理参数。我们在两个汇集文库上展示了MAGMA-seq,这两个文库包含跨越轻链基因使用、互补决定区H3长度和抗原靶点的十种不同人类抗体的突变体。我们展示了潜在抗体开发途径的全面图谱、多种抗体同时的序列-结合关系,以及针对广泛中和抗体(bnAbs)结合识别的互补决定区序列决定因素的鉴定。MAGMA-seq能够对多个潜在候选抗体进行快速且可扩展的抗体工程改造,因为它可以在单个实验中测量许多给定亲本抗体突变体的结合情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cdc/10827193/48c246ce0b7d/nihpp-2024.01.16.575852v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验