Suppr超能文献

基线抗体谱可预测接受免疫检查点抑制剂治疗的黑色素瘤患者的毒性。

Baseline antibody profiles predict toxicity in melanoma patients treated with immune checkpoint inhibitors.

机构信息

The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY, USA.

Division of Epidemiology, New York University School of Medicine, New York, NY, USA.

出版信息

J Transl Med. 2018 Apr 2;16(1):82. doi: 10.1186/s12967-018-1452-4.

Abstract

BACKGROUND

Immune checkpoint inhibitors (anti-CTLA-4, anti-PD-1, or the combination) enhance anti-tumor immune responses, yielding durable clinical benefit in several cancer types, including melanoma. However, a subset of patients experience immune-related adverse events (irAEs), which can be severe and result in treatment termination. To date, no biomarker exists that can predict development of irAEs.

METHODS

We hypothesized that pre-treatment antibody profiles identify a subset of patients who possess a sub-clinical autoimmune phenotype that predisposes them to develop severe irAEs following immune system disinhibition. Using a HuProt human proteome array, we profiled baseline antibody levels in sera from melanoma patients treated with anti-CTLA-4, anti-PD-1, or the combination, and used support vector machine models to identify pre-treatment antibody signatures that predict irAE development.

RESULTS

We identified distinct pre-treatment serum antibody profiles associated with severe irAEs for each therapy group. Support vector machine classifier models identified antibody signatures that could effectively discriminate between toxicity groups with > 90% accuracy, sensitivity, and specificity. Pathway analyses revealed significant enrichment of antibody targets associated with immunity/autoimmunity, including TNFα signaling, toll-like receptor signaling and microRNA biogenesis.

CONCLUSIONS

Our results provide the first evidence supporting a predisposition to develop severe irAEs upon immune system disinhibition, which requires further independent validation in a clinical trial setting.

摘要

背景

免疫检查点抑制剂(抗 CTLA-4、抗 PD-1 或联合治疗)增强了抗肿瘤免疫反应,在多种癌症类型中包括黑色素瘤在内,都取得了持久的临床获益。然而,有一部分患者会出现免疫相关不良反应(irAEs),这些不良反应可能很严重,甚至导致治疗终止。迄今为止,还没有可以预测 irAEs 发展的生物标志物。

方法

我们假设,治疗前的抗体谱可以识别出一部分患者,他们存在亚临床自身免疫表型,这使他们在免疫系统抑制后容易发生严重的 irAEs。我们使用 HuProt 人类蛋白质组阵列,对接受抗 CTLA-4、抗 PD-1 或联合治疗的黑色素瘤患者的基线血清抗体水平进行了分析,并使用支持向量机模型来确定预测 irAE 发展的治疗前抗体特征。

结果

我们确定了与每种治疗组的严重 irAEs 相关的独特治疗前血清抗体谱。支持向量机分类器模型能够有效地识别出毒性组,准确率、敏感度和特异性均超过 90%。通路分析显示,与免疫/自身免疫相关的抗体靶标显著富集,包括 TNFα 信号通路、Toll 样受体信号通路和 microRNA 生物发生。

结论

我们的研究结果首次提供了证据,支持在免疫系统抑制后发生严重 irAEs 的倾向,这需要在临床试验中进一步独立验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8391/5880088/20bfde95c3ed/12967_2018_1452_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验