The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY, USA.
Division of Epidemiology, New York University School of Medicine, New York, NY, USA.
J Transl Med. 2018 Apr 2;16(1):82. doi: 10.1186/s12967-018-1452-4.
Immune checkpoint inhibitors (anti-CTLA-4, anti-PD-1, or the combination) enhance anti-tumor immune responses, yielding durable clinical benefit in several cancer types, including melanoma. However, a subset of patients experience immune-related adverse events (irAEs), which can be severe and result in treatment termination. To date, no biomarker exists that can predict development of irAEs.
We hypothesized that pre-treatment antibody profiles identify a subset of patients who possess a sub-clinical autoimmune phenotype that predisposes them to develop severe irAEs following immune system disinhibition. Using a HuProt human proteome array, we profiled baseline antibody levels in sera from melanoma patients treated with anti-CTLA-4, anti-PD-1, or the combination, and used support vector machine models to identify pre-treatment antibody signatures that predict irAE development.
We identified distinct pre-treatment serum antibody profiles associated with severe irAEs for each therapy group. Support vector machine classifier models identified antibody signatures that could effectively discriminate between toxicity groups with > 90% accuracy, sensitivity, and specificity. Pathway analyses revealed significant enrichment of antibody targets associated with immunity/autoimmunity, including TNFα signaling, toll-like receptor signaling and microRNA biogenesis.
Our results provide the first evidence supporting a predisposition to develop severe irAEs upon immune system disinhibition, which requires further independent validation in a clinical trial setting.
免疫检查点抑制剂(抗 CTLA-4、抗 PD-1 或联合治疗)增强了抗肿瘤免疫反应,在多种癌症类型中包括黑色素瘤在内,都取得了持久的临床获益。然而,有一部分患者会出现免疫相关不良反应(irAEs),这些不良反应可能很严重,甚至导致治疗终止。迄今为止,还没有可以预测 irAEs 发展的生物标志物。
我们假设,治疗前的抗体谱可以识别出一部分患者,他们存在亚临床自身免疫表型,这使他们在免疫系统抑制后容易发生严重的 irAEs。我们使用 HuProt 人类蛋白质组阵列,对接受抗 CTLA-4、抗 PD-1 或联合治疗的黑色素瘤患者的基线血清抗体水平进行了分析,并使用支持向量机模型来确定预测 irAE 发展的治疗前抗体特征。
我们确定了与每种治疗组的严重 irAEs 相关的独特治疗前血清抗体谱。支持向量机分类器模型能够有效地识别出毒性组,准确率、敏感度和特异性均超过 90%。通路分析显示,与免疫/自身免疫相关的抗体靶标显著富集,包括 TNFα 信号通路、Toll 样受体信号通路和 microRNA 生物发生。
我们的研究结果首次提供了证据,支持在免疫系统抑制后发生严重 irAEs 的倾向,这需要在临床试验中进一步独立验证。