Suppr超能文献

超越组织硬度和生物粘附性:用于模拟肿瘤微环境和耐药性的先进生物材料

Beyond Tissue Stiffness and Bioadhesivity: Advanced Biomaterials to Model Tumor Microenvironments and Drug Resistance.

作者信息

Singh Ankur, Brito Ilana, Lammerding Jan

机构信息

Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine, New York, NY, USA.

Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.

出版信息

Trends Cancer. 2018 Apr;4(4):281-291. doi: 10.1016/j.trecan.2018.01.008. Epub 2018 Mar 10.

Abstract

Resistance to chemotherapy and pathway-targeted therapies poses a major problem in cancer research. While the fields of tumor biology and experimental therapeutics have already benefited from ex vivo preclinical tissue models, these models have yet to address the reasons for malignant transformations and the emergence of chemoresistance. With the increasing number of ex vivo models poised to incorporate physiological biophysical properties, along with the advent of genomic sequencing information, there are now unprecedented opportunities to better understand tumorigenesis and to design therapeutic approaches to overcome resistance. Here we discuss that new preclinical ex vivo models should consider - in addition to common biophysical parameters such as matrix stiffness and bioadhesivity - a more comprehensive milieu of tissue signaling, nuclear mechanics, immune response, and the gut microbiome.

摘要

对化疗和通路靶向治疗的耐药性是癌症研究中的一个主要问题。虽然肿瘤生物学和实验治疗学领域已经从离体临床前组织模型中受益,但这些模型尚未解决恶性转化和化疗耐药性出现的原因。随着越来越多的离体模型准备纳入生理生物物理特性,以及基因组测序信息的出现,现在有前所未有的机会更好地理解肿瘤发生,并设计克服耐药性的治疗方法。在这里,我们讨论新的临床前离体模型除了应考虑诸如基质硬度和生物粘附性等常见生物物理参数外,还应考虑更全面的组织信号传导、核力学、免疫反应和肠道微生物群环境。

相似文献

1
Beyond Tissue Stiffness and Bioadhesivity: Advanced Biomaterials to Model Tumor Microenvironments and Drug Resistance.
Trends Cancer. 2018 Apr;4(4):281-291. doi: 10.1016/j.trecan.2018.01.008. Epub 2018 Mar 10.
2
Why Tumor Genetic Heterogeneity May Require Rethinking Cancer Genesis and Treatment.
Trends Cancer. 2021 May;7(5):400-409. doi: 10.1016/j.trecan.2020.10.013. Epub 2020 Nov 23.
3
Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance.
Drug Resist Updat. 2011 Jun;14(3):150-63. doi: 10.1016/j.drup.2011.01.003. Epub 2011 Feb 16.
5
Harnessing the power of human tumor-derived cell lines for the rational design of cancer therapies.
Pigment Cell Melanoma Res. 2012 Jul;25(4):406-8. doi: 10.1111/j.1755-148X.2012.01020.x.
6
Addressing intra-tumoral heterogeneity and therapy resistance.
Oncotarget. 2016 Nov 1;7(44):72322-72342. doi: 10.18632/oncotarget.11875.
7
Exploiting Matrix Stiffness to Overcome Drug Resistance.
ACS Biomater Sci Eng. 2024 Aug 12;10(8):4682-4700. doi: 10.1021/acsbiomaterials.4c00445. Epub 2024 Jul 5.
9
Cancer cell metabolism: Rewiring the mitochondrial hub.
Biochim Biophys Acta Mol Basis Dis. 2021 Feb 1;1867(2):166016. doi: 10.1016/j.bbadis.2020.166016. Epub 2020 Nov 25.
10
Exosomes and their role in tumorigenesis and anticancer drug resistance.
Drug Resist Updat. 2019 Jul;45:1-12. doi: 10.1016/j.drup.2019.07.003. Epub 2019 Jul 23.

引用本文的文献

1
The effects of matrix stiffness on immune cells in bone biology.
Mechanobiol Med. 2024 Feb 22;2(2):100046. doi: 10.1016/j.mbm.2024.100046. eCollection 2024 Jun.
3
Biomaterial-based 3D modeling of glioblastoma multiforme.
Cancer Pathog Ther. 2023 Jan 9;1(3):177-194. doi: 10.1016/j.cpt.2023.01.002. eCollection 2023 Jul.
5
Tumor matrix stiffness provides fertile soil for cancer stem cells.
Cancer Cell Int. 2023 Jul 20;23(1):143. doi: 10.1186/s12935-023-02992-w.
6
3D Porous Scaffold-Based High-Throughput Platform for Cancer Drug Screening.
Pharmaceutics. 2023 Jun 9;15(6):1691. doi: 10.3390/pharmaceutics15061691.
7
Three-dimensional core-shell alginate microsphere for cancer hypoxia simulation .
Front Bioeng Biotechnol. 2023 Apr 11;11:1174206. doi: 10.3389/fbioe.2023.1174206. eCollection 2023.
8
Precision Hydrogels for the Study of Cancer Cell Mechanobiology.
Adv Healthc Mater. 2023 Jun;12(14):e2202514. doi: 10.1002/adhm.202202514. Epub 2023 Mar 27.
9
Click chemistry functionalization of self-assembling peptide hydrogels.
J Biomed Mater Res A. 2023 Mar;111(3):389-403. doi: 10.1002/jbm.a.37460. Epub 2022 Oct 10.
10

本文引用的文献

1
Modular Immune Organoids with Integrin Ligand Specificity Differentially Regulate Ex Vivo B Cell Activation.
ACS Biomater Sci Eng. 2017 Feb 13;3(2):214-225. doi: 10.1021/acsbiomaterials.6b00474. Epub 2017 Jan 5.
2
Chromosomal instability drives metastasis through a cytosolic DNA response.
Nature. 2018 Jan 25;553(7689):467-472. doi: 10.1038/nature25432. Epub 2018 Jan 17.
5
Drug discovery and therapeutic delivery for the treatment of B and T cell tumors.
Adv Drug Deliv Rev. 2017 May 15;114:285-300. doi: 10.1016/j.addr.2017.06.010. Epub 2017 Jun 15.
6
Biomaterials innovation for next generation ex vivo immune tissue engineering.
Biomaterials. 2017 Jun;130:104-110. doi: 10.1016/j.biomaterials.2017.03.015. Epub 2017 Mar 15.
7
An Intestinal Organ Culture System Uncovers a Role for the Nervous System in Microbe-Immune Crosstalk.
Cell. 2017 Mar 9;168(6):1135-1148.e12. doi: 10.1016/j.cell.2017.02.009. Epub 2017 Mar 2.
9
Immuno-engineered organoids for regulating the kinetics of B-cell development and antibody production.
Nat Protoc. 2017 Jan;12(1):168-182. doi: 10.1038/nprot.2016.157. Epub 2016 Dec 22.
10
DNA Damage Follows Repair Factor Depletion and Portends Genome Variation in Cancer Cells after Pore Migration.
Curr Biol. 2017 Jan 23;27(2):210-223. doi: 10.1016/j.cub.2016.11.049. Epub 2016 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验