Suppr超能文献

通过时间分辨电子顺磁共振光谱研究小分子太阳能电池中的电荷分离和三线态激子形成途径

Charge Separation and Triplet Exciton Formation Pathways in Small Molecule Solar Cells as Studied by Time-resolved EPR Spectroscopy.

作者信息

Thomson Stuart A J, Niklas Jens, Mardis Kristy L, Mallares Christopher, Samuel Ifor D W, Poluektov Oleg G

机构信息

Organic Semiconductor Centre, SUPA, School of Physics & Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK.

Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.

出版信息

J Phys Chem C Nanomater Interfaces. 2017 Oct 19;121(41):22707-22719. doi: 10.1021/acs.jpcc.7b08217. Epub 2017 Sep 13.

Abstract

Organic solar cells are a promising renewable energy technology, offering the advantages of mechanical flexibility and solution processability. An understanding of the electronic excited states and charge separation pathways in these systems is crucial if efficiencies are to be further improved. Here we use light induced electron paramagnetic resonance (LEPR) spectroscopy and density functional theory calculations (DFT) to study the electronic excited states, charge transfer (CT) dynamics and triplet exciton formation pathways in blends of the small molecule donors (DTS(FBTTh), DTS(FBTTh), DTS(PTTh), DTG(FBTTh) and DTG(FBTTh)) with the fullerene derivative PCBM. Using high frequency EPR the g-tensor of the positive polaron on the donor molecules was determined. The experimental results are compared with DFT calculations which reveal that the spin density of the polaron is distributed over a dimer or trimer. Time-resolved EPR (TR-EPR) spectra attributed to singlet CT states were identified and the polarization patterns revealed similar charge separation dynamics in the four fluorobenzothiadiazole donors, while charge separation in the DTS(PTTh) blend is slower. Using TR-EPR we also investigated the triplet exciton formation pathways in the blend. The polarization patterns reveal that the excitons originate from both intersystem crossing (ISC) and back electron transfer (BET) processes. The DTS(PTTh) blend was found to contain substantially more triplet excitons formed by BET than the fluorobenzothiadiazole blends. The higher BET triplet exciton population in the DTS(PTTh) blend is in accordance with the slower charge separation dynamics observed in this blend.

摘要

有机太阳能电池是一种很有前景的可再生能源技术,具有机械柔韧性和溶液可加工性等优点。如果要进一步提高效率,了解这些系统中的电子激发态和电荷分离途径至关重要。在这里,我们使用光诱导电子顺磁共振(LEPR)光谱和密度泛函理论计算(DFT)来研究小分子供体(DTS(FBTTh)、DTS(FBTTh)、DTS(PTTh)、DTG(FBTTh)和DTG(FBTTh))与富勒烯衍生物PCBM的混合物中的电子激发态、电荷转移(CT)动力学和三重态激子形成途径。使用高频电子顺磁共振确定了供体分子上正极化子的g张量。将实验结果与DFT计算进行比较,结果表明极化子的自旋密度分布在二聚体或三聚体上。识别出了归因于单线态CT态的时间分辨电子顺磁共振(TR-EPR)光谱,极化模式表明四种氟苯并噻二唑供体中的电荷分离动力学相似,而DTS(PTTh)混合物中的电荷分离较慢。我们还使用TR-EPR研究了混合物中的三重态激子形成途径。极化模式表明激子起源于系间窜越(ISC)和反向电子转移(BET)过程。发现DTS(PTTh)混合物中由BET形成的三重态激子比氟苯并噻二唑混合物中的要多得多。DTS(PTTh)混合物中较高的BET三重态激子数量与该混合物中观察到的较慢电荷分离动力学一致。

相似文献

1
Charge Separation and Triplet Exciton Formation Pathways in Small Molecule Solar Cells as Studied by Time-resolved EPR Spectroscopy.
J Phys Chem C Nanomater Interfaces. 2017 Oct 19;121(41):22707-22719. doi: 10.1021/acs.jpcc.7b08217. Epub 2017 Sep 13.
4
Enhanced photogeneration of triplet excitons in an oligothiophene-fullerene blend.
Chemphyschem. 2007 Jul 16;8(10):1497-503. doi: 10.1002/cphc.200700306.
5
Mechanism of Ultrafast Triplet Exciton Formation in Single Cocrystals of π-Stacked Electron Donors and Acceptors.
J Am Chem Soc. 2022 Oct 12;144(40):18607-18618. doi: 10.1021/jacs.2c08584. Epub 2022 Sep 30.
6
Increased Exciton Delocalization of Polymer upon Blending with Fullerene.
Adv Mater. 2018 Jul;30(30):e1801392. doi: 10.1002/adma.201801392. Epub 2018 Jun 11.
7
Photoinduced Dynamics of Charge Separation: From Photosynthesis to Polymer-Fullerene Bulk Heterojunctions.
J Phys Chem B. 2015 Jun 18;119(24):7407-16. doi: 10.1021/jp511021v. Epub 2015 Jan 30.
9
The role of charge recombination to triplet excitons in organic solar cells.
Nature. 2021 Sep;597(7878):666-671. doi: 10.1038/s41586-021-03840-5. Epub 2021 Sep 29.

引用本文的文献

本文引用的文献

1
Effect of Annealing on Exciton Diffusion in a High Performance Small Molecule Organic Photovoltaic Material.
ACS Appl Mater Interfaces. 2017 May 3;9(17):14945-14952. doi: 10.1021/acsami.6b16487. Epub 2017 Apr 18.
2
Molecular Design of Benzodithiophene-Based Organic Photovoltaic Materials.
Chem Rev. 2016 Jun 22;116(12):7397-457. doi: 10.1021/acs.chemrev.6b00176. Epub 2016 Jun 2.
3
The effect of intermolecular interaction on excited states in p-DTS(FBTTH2)2.
J Chem Phys. 2016 Feb 21;144(7):074904. doi: 10.1063/1.4941700.
4
Electronic Structure of Fullerene Acceptors in Organic Bulk-Heterojunctions: A Combined EPR and DFT Study.
J Phys Chem Lett. 2015 Dec 3;6(23):4730-5. doi: 10.1021/acs.jpclett.5b02111. Epub 2015 Nov 16.
5
Ordering of PCDTBT revealed by time-resolved electron paramagnetic resonance spectroscopy of its triplet excitons.
Angew Chem Int Ed Engl. 2015 Jun 22;54(26):7707-10. doi: 10.1002/anie.201502241. Epub 2015 May 8.
6
A series of simple oligomer-like small molecules based on oligothiophenes for solution-processed solar cells with high efficiency.
J Am Chem Soc. 2015 Mar 25;137(11):3886-93. doi: 10.1021/jacs.5b00305. Epub 2015 Mar 11.
7
Polaron pair mediated triplet generation in polymer/fullerene blends.
Nat Commun. 2015 Mar 4;6:6501. doi: 10.1038/ncomms7501.
8
Photoinduced Dynamics of Charge Separation: From Photosynthesis to Polymer-Fullerene Bulk Heterojunctions.
J Phys Chem B. 2015 Jun 18;119(24):7407-16. doi: 10.1021/jp511021v. Epub 2015 Jan 30.
10
Solution-processed organic solar cells based on dialkylthiol-substituted benzodithiophene unit with efficiency near 10%.
J Am Chem Soc. 2014 Nov 5;136(44):15529-32. doi: 10.1021/ja509703k. Epub 2014 Oct 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验