Thomson Stuart A J, Niklas Jens, Mardis Kristy L, Mallares Christopher, Samuel Ifor D W, Poluektov Oleg G
Organic Semiconductor Centre, SUPA, School of Physics & Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK.
Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.
J Phys Chem C Nanomater Interfaces. 2017 Oct 19;121(41):22707-22719. doi: 10.1021/acs.jpcc.7b08217. Epub 2017 Sep 13.
Organic solar cells are a promising renewable energy technology, offering the advantages of mechanical flexibility and solution processability. An understanding of the electronic excited states and charge separation pathways in these systems is crucial if efficiencies are to be further improved. Here we use light induced electron paramagnetic resonance (LEPR) spectroscopy and density functional theory calculations (DFT) to study the electronic excited states, charge transfer (CT) dynamics and triplet exciton formation pathways in blends of the small molecule donors (DTS(FBTTh), DTS(FBTTh), DTS(PTTh), DTG(FBTTh) and DTG(FBTTh)) with the fullerene derivative PCBM. Using high frequency EPR the g-tensor of the positive polaron on the donor molecules was determined. The experimental results are compared with DFT calculations which reveal that the spin density of the polaron is distributed over a dimer or trimer. Time-resolved EPR (TR-EPR) spectra attributed to singlet CT states were identified and the polarization patterns revealed similar charge separation dynamics in the four fluorobenzothiadiazole donors, while charge separation in the DTS(PTTh) blend is slower. Using TR-EPR we also investigated the triplet exciton formation pathways in the blend. The polarization patterns reveal that the excitons originate from both intersystem crossing (ISC) and back electron transfer (BET) processes. The DTS(PTTh) blend was found to contain substantially more triplet excitons formed by BET than the fluorobenzothiadiazole blends. The higher BET triplet exciton population in the DTS(PTTh) blend is in accordance with the slower charge separation dynamics observed in this blend.
有机太阳能电池是一种很有前景的可再生能源技术,具有机械柔韧性和溶液可加工性等优点。如果要进一步提高效率,了解这些系统中的电子激发态和电荷分离途径至关重要。在这里,我们使用光诱导电子顺磁共振(LEPR)光谱和密度泛函理论计算(DFT)来研究小分子供体(DTS(FBTTh)、DTS(FBTTh)、DTS(PTTh)、DTG(FBTTh)和DTG(FBTTh))与富勒烯衍生物PCBM的混合物中的电子激发态、电荷转移(CT)动力学和三重态激子形成途径。使用高频电子顺磁共振确定了供体分子上正极化子的g张量。将实验结果与DFT计算进行比较,结果表明极化子的自旋密度分布在二聚体或三聚体上。识别出了归因于单线态CT态的时间分辨电子顺磁共振(TR-EPR)光谱,极化模式表明四种氟苯并噻二唑供体中的电荷分离动力学相似,而DTS(PTTh)混合物中的电荷分离较慢。我们还使用TR-EPR研究了混合物中的三重态激子形成途径。极化模式表明激子起源于系间窜越(ISC)和反向电子转移(BET)过程。发现DTS(PTTh)混合物中由BET形成的三重态激子比氟苯并噻二唑混合物中的要多得多。DTS(PTTh)混合物中较高的BET三重态激子数量与该混合物中观察到的较慢电荷分离动力学一致。