Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States.
Chemical Sciences and Engineering Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States.
Acc Chem Res. 2018 Apr 17;51(4):978-985. doi: 10.1021/acs.accounts.8b00077. Epub 2018 Apr 3.
Alkene ozonolysis is a primary oxidation pathway for anthropogenic and biogenic alkenes emitted into the troposphere. It is also an important source of atmospheric hydroxyl (OH) radicals, often called the atmosphere's detergent. Alkene ozonolysis takes place through a highly exothermic reaction pathway with multiple intermediates and barriers prior to releasing the OH radical products. This Account focuses on a key reaction intermediate with a carbonyl oxide functional group (-COO), known as the Criegee intermediate, which is formed along with a carbonyl coproduct in alkene ozonolysis reactions. Under atmospheric conditions, the initially energized Criegee intermediates may promptly decay to OH products or be collisionally stabilized prior to thermal decay to OH radicals and other products. Alternatively, the stabilized Criegee intermediates may undergo bimolecular reactions with atmospheric species, including water vapor and sulfur dioxide, which can lead to nucleation and growth of aerosols. The dimethyl-substituted Criegee intermediate, (CH)COO, is utilized in this Account to showcase recent efforts to experimentally measure and theoretically predict the rates for prompt and thermal unimolecular decay processes of prototypical Criegee intermediates under laboratory and atmospheric conditions. The experimental laboratory studies utilize an alternative synthesis method to efficiently generate Criegee intermediates via the reaction of iodoalkyl radicals with O. Infrared excitation is then used to prepare the (CH)COO Criegee intermediates at specific energies in the vicinity of the transition state barrier or significantly below the barrier for 1,4-hydrogen transfer that leads to OH products. The rate of unimolecular decay is revealed through direct time-domain measurements of the appearance of OH products utilizing ultraviolet laser-induced fluorescence detection under collision-free conditions. Complementary high-level theoretical calculations are carried out to evaluate the transition state barrier and the energy-dependent unimolecular decay rates for (CH)COO using Rice-Ramsperger-Kassel-Marcus (RRKM) theory, which are in excellent accord with the experimental measurements. Quantum mechanical tunneling through the barrier, incorporated through Eckart and semiclassical transition state theory models, is shown to make a significant contribution to the unimolecular decay rates at energies in the vicinity of and much below the barrier. Master equation modeling is used to extend the energy-dependent unimolecular rates to thermal decay rates of (CH)COO under tropospheric conditions (high pressure limit), which agree well with recent laboratory measurements [ Smith et al. J. Phys. Chem. A 2016 , 120 , 4789 and Chhantyal-Pun et al. J. Phys. Chem. A 2017 , 121 , 4 - 15 ]. Again, tunneling is shown to enhance the thermal decay rate by orders of magnitude. The experimentally validated unimolecular rates are also utilized in modeling the prompt and thermal unimolecular decay of chemically activated (CH)COO formed upon ozonolysis of 2,3-dimethyl-2-butene under atmospheric conditions [ Drozd et al. J. Phys. Chem. A 2017 , 121 , 6036 - 6045 ]. Future challenges lie in extension of these spectroscopic and dynamical methods to Criegee intermediates derived from more complex ozonolysis reactions involving biogenic alkenes.
烯烃臭氧化是人为和生物源烯烃排放到对流层中的主要氧化途径。它也是大气羟基 (OH) 自由基的重要来源,通常被称为大气的清洁剂。烯烃臭氧化通过具有多个中间体和障碍的高度放热反应途径进行,然后释放 OH 自由基产物。本说明重点介绍一种具有羰基氧化物官能团 (-COO) 的关键反应中间体,称为 Criegee 中间体,它与烯烃臭氧化反应中的羰基副产物一起形成。在大气条件下,最初充满能量的 Criegee 中间体可能会迅速分解为 OH 产物,或者在热分解为 OH 自由基和其他产物之前通过碰撞稳定。或者,稳定的 Criegee 中间体可能与大气物质(包括水蒸气和二氧化硫)发生双分子反应,这可能导致气溶胶的成核和生长。本文利用二甲基取代的 Criegee 中间体 (CH)COO 来展示最近在实验室和大气条件下通过碘烷基自由基与 O 的反应来有效生成 Criegee 中间体的实验和理论努力,以实验测量和理论预测原型 Criegee 中间体的快速和热单分子分解过程的速率。实验实验室研究利用替代合成方法通过碘烷基自由基与 O 的反应来有效地生成 Criegee 中间体。然后利用红外激发在接近过渡态势垒或显著低于导致 OH 产物的 1,4-氢转移的势垒的特定能量下制备 (CH)COO Criegee 中间体。通过在无碰撞条件下利用紫外激光诱导荧光检测直接在时域内测量 OH 产物的出现来揭示单分子分解的速率。使用 Rice-Ramsperger-Kassel-Marcus (RRKM) 理论进行互补的高水平理论计算,以评估 (CH)COO 的过渡态势垒和能量依赖性单分子分解速率,这与实验测量结果非常吻合。通过纳入 E ckart 和半经典过渡态理论模型的量子力学隧穿,表明在势垒附近和远低于势垒的能量下,对单分子分解速率有显著贡献。主方程模型用于将能量依赖性单分子速率扩展到 tropospheric 条件(高压极限)下 (CH)COO 的热分解速率,这与最近的实验室测量结果非常吻合[Smith 等人,J. Phys. Chem. A 2016, 120, 4789 和 Chhantyal-Pun 等人,J. Phys. Chem. A 2017, 121, 4-15]。再次表明,隧穿使热分解速率提高了几个数量级。经实验验证的单分子速率也用于模拟在大气条件下臭氧分解 2,3-二甲基-2-丁烯形成的化学活化 (CH)COO 的快速和热单分子分解[Drozd 等人,J. Phys. Chem. A 2017, 121, 6036-6045]。未来的挑战在于将这些光谱和动力学方法扩展到涉及生物源烯烃的更复杂臭氧化反应中衍生的 Criegee 中间体。