Suppr超能文献

具有氮化钛(TiN)核壳纳米螺旋的手性等离子体难熔超材料。

Chiro-plasmonic refractory metamaterial with titanium nitride (TiN) core-shell nanohelices.

作者信息

Venkataramanababu Sruthi, Nair Greshma, Deshpande Preeti, A Jithin M, Mohan Sangeneni, Ghosh Ambarish

机构信息

Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, India. Birla Institute of Technology and Science, Pilani, Hyderabad Campus, India.

出版信息

Nanotechnology. 2018 Jun 22;29(25):255203. doi: 10.1088/1361-6528/aabb4a. Epub 2018 Apr 3.

Abstract

Chiral metamaterials are obtained by assembling plasmonic elements in geometries with broken mirror symmetry, which can have promising applications pertaining to generation, manipulation and detection of optical polarisation. The materials used to fabricate this promising nanosystem, especially in the visible-NIR regime, are limited to noble metals such as Au and Ag. However, they are not stable at elevated temperatures and in addition, incompatible with CMOS technologies. We demonstrate that it is possible to develop a chiro-plasmonic system based on a refractory material such as titanium nitride (TiN) which does not have these disadvantages. The building block of our metamaterial is a novel core-shell helix, obtained by coating TiN over silica nanohelices. These were arranged in a regular two-dimensional array over cm-scale areas, made possible by the use of scalable fabrication techniques such as laser interference lithography, glancing angle deposition and DC magnetron sputtering. The measured chiro-optical response was extremely broadband (<500 nm to >1400 nm), and had contributions from individual, as well as collective plasmon modes of the interacting nanohelices, whose spectral characteristics could be easily controlled by varying the direction of the incident radiation.

摘要

手性超材料是通过将等离子体元件组装在具有破镜面对称性的几何结构中获得的,在光偏振的产生、操纵和检测方面可能具有广阔的应用前景。用于制造这种有前景的纳米系统的材料,特别是在可见光-近红外波段,仅限于金和银等贵金属。然而,它们在高温下不稳定,此外,与CMOS技术不兼容。我们证明,基于氮化钛(TiN)等难熔材料开发一种手性等离子体系统是可能的,该系统没有这些缺点。我们超材料的基本单元是一种新型的核壳螺旋结构,通过在二氧化硅纳米螺旋上涂覆TiN获得。通过使用激光干涉光刻、掠角沉积和直流磁控溅射等可扩展制造技术,这些结构在厘米级区域内以规则的二维阵列排列。测量得到的手性光学响应具有极宽的带宽(<500 nm至>1400 nm),并且来自相互作用的纳米螺旋的单个以及集体等离子体模式的贡献,其光谱特性可以通过改变入射辐射的方向轻松控制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验