Laureate Institute for Brain Research, Tulsa, OK, USA.
School of Electrical and Computer Engineering, University of Oklahoma-Tulsa, Tulsa, OK, USA.
J Neurosci Methods. 2018 Jul 1;304:168-184. doi: 10.1016/j.jneumeth.2018.03.017. Epub 2018 Mar 31.
In simultaneous EEG-fMRI, identification of the period of cardioballistic artifact (BCG) in EEG is required for the artifact removal. Recording the electrocardiogram (ECG) waveform during fMRI is difficult, often causing inaccurate period detection.
Since the waveform of the BCG extracted by independent component analysis (ICA) is relatively invariable compared to the ECG waveform, we propose a multiple-scale peak-detection algorithm to determine the BCG cycle directly from the EEG data. The algorithm first extracts the high contrast BCG component from the EEG data by ICA. The BCG cycle is then estimated by band-pass filtering the component around the fundamental frequency identified from its energy spectral density, and the peak of BCG artifact occurrence is selected from each of the estimated cycle.
The algorithm is shown to achieve a high accuracy on a large EEG-fMRI dataset. It is also adaptive to various heart rates without the needs of adjusting the threshold parameters. The cycle detection remains accurate with the scan duration reduced to half a minute. Additionally, the algorithm gives a figure of merit to evaluate the reliability of the detection accuracy.
The algorithm is shown to give a higher detection accuracy than the commonly used cycle detection algorithm fmrib_qrsdetect implemented in EEGLAB.
The achieved high cycle detection accuracy of our algorithm without using the ECG waveforms makes possible to create and automate pipelines for processing large EEG-fMRI datasets, and virtually eliminates the need for ECG recordings for BCG artifact removal.
在同步 EEG-fMRI 中,需要识别 EEG 中的心动球棒伪影(BCG)周期,以便进行伪影去除。在 fMRI 期间记录心电图(ECG)波形很困难,通常会导致周期检测不准确。
由于独立成分分析(ICA)提取的 BCG 波形与 ECG 波形相比相对不变,因此我们提出了一种多尺度峰值检测算法,可直接从 EEG 数据中确定 BCG 周期。该算法首先通过 ICA 从 EEG 数据中提取高对比度的 BCG 分量。然后,通过对从其能量谱密度中识别出的基频周围的分量进行带通滤波来估计 BCG 周期,并从每个估计的周期中选择 BCG 伪影发生的峰值。
该算法在大型 EEG-fMRI 数据集上表现出很高的准确性。它还适应各种心率,无需调整阈值参数。在扫描持续时间缩短至半分钟的情况下,周期检测仍然准确。此外,该算法给出了一个度量标准来评估检测准确性的可靠性。
该算法在 EEGLAB 中实现的常用周期检测算法 fmrib_qrsdetect 相比,具有更高的检测准确性。
我们的算法无需使用 ECG 波形即可实现高周期检测准确性,这使得处理大型 EEG-fMRI 数据集的流水线的创建和自动化成为可能,并几乎消除了对 ECG 记录进行 BCG 伪影去除的需求。