Suppr超能文献

相似文献

1
Detecting hidden batch factors through data-adaptive adjustment for biological effects.
Bioinformatics. 2018 Apr 1;34(7):1141-1147. doi: 10.1093/bioinformatics/btx635.
2
GDASC: a GPU parallel-based web server for detecting hidden batch factors.
Bioinformatics. 2020 Aug 15;36(14):4211-4213. doi: 10.1093/bioinformatics/btaa427.
4
ResPAN: a powerful batch correction model for scRNA-seq data through residual adversarial networks.
Bioinformatics. 2022 Aug 10;38(16):3942-3949. doi: 10.1093/bioinformatics/btac427.
5
ASAP: a web-based platform for the analysis and interactive visualization of single-cell RNA-seq data.
Bioinformatics. 2017 Oct 1;33(19):3123-3125. doi: 10.1093/bioinformatics/btx337.
6
Mitigating the adverse impact of batch effects in sample pattern detection.
Bioinformatics. 2018 Aug 1;34(15):2634-2641. doi: 10.1093/bioinformatics/bty117.
7
V-SVA: an R Shiny application for detecting and annotating hidden sources of variation in single-cell RNA-seq data.
Bioinformatics. 2020 Jun 1;36(11):3582-3584. doi: 10.1093/bioinformatics/btaa128.
8
Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge.
Bioinformatics. 2018 Jul 1;34(13):i124-i132. doi: 10.1093/bioinformatics/bty293.
10
HDMC: a novel deep learning-based framework for removing batch effects in single-cell RNA-seq data.
Bioinformatics. 2022 Feb 7;38(5):1295-1303. doi: 10.1093/bioinformatics/btab821.

引用本文的文献

2
Ethanol Concentration Determination in Baijiu by Graph-Regularized PCA and Random Forest-Based Raman Spectroscopy.
ACS Omega. 2025 Apr 3;10(14):14373-14381. doi: 10.1021/acsomega.5c00616. eCollection 2025 Apr 15.
3
Human milk feeding practices and serum immune profiles of one-year-old infants in the CHILD birth cohort study.
Am J Clin Nutr. 2025 Jan;121(1):60-73. doi: 10.1016/j.ajcnut.2024.10.021. Epub 2024 Oct 30.
5
Thinking points for effective batch correction on biomedical data.
Brief Bioinform. 2024 Sep 23;25(6). doi: 10.1093/bib/bbae515.
8
Identification of a Five-mRNA Signature as a Novel Potential Prognostic Biomarker for Glioblastoma by Integrative Analysis.
Front Genet. 2022 Jul 8;13:931938. doi: 10.3389/fgene.2022.931938. eCollection 2022.
10
Inferring Multiple Sclerosis Stages from the Blood Transcriptome via Machine Learning.
Cell Rep Med. 2020 Jul 21;1(4):100053. doi: 10.1016/j.xcrm.2020.100053.

本文引用的文献

1
Missing data and technical variability in single-cell RNA-sequencing experiments.
Biostatistics. 2018 Oct 1;19(4):562-578. doi: 10.1093/biostatistics/kxx053.
2
Reproducible RNA-seq analysis using recount2.
Nat Biotechnol. 2017 Apr 11;35(4):319-321. doi: 10.1038/nbt.3838.
3
GFS: fuzzy preprocessing for effective gene expression analysis.
BMC Bioinformatics. 2016 Dec 23;17(Suppl 17):540. doi: 10.1186/s12859-016-1327-8.
4
Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R.
Bioinformatics. 2017 Apr 15;33(8):1179-1186. doi: 10.1093/bioinformatics/btw777.
5
Batch effects and the effective design of single-cell gene expression studies.
Sci Rep. 2017 Jan 3;7:39921. doi: 10.1038/srep39921.
6
Improving cross-study prediction through addon batch effect adjustment or addon normalization.
Bioinformatics. 2017 Feb 1;33(3):397-404. doi: 10.1093/bioinformatics/btw650.
7
Pooling across cells to normalize single-cell RNA sequencing data with many zero counts.
Genome Biol. 2016 Apr 27;17:75. doi: 10.1186/s13059-016-0947-7.
8
Splitting Methods for Convex Clustering.
J Comput Graph Stat. 2015;24(4):994-1013. doi: 10.1080/10618600.2014.948181. Epub 2015 Dec 10.
9
A reanalysis of mouse ENCODE comparative gene expression data.
F1000Res. 2015 May 19;4:121. doi: 10.12688/f1000research.6536.1. eCollection 2015.
10
Removing batch effects from purified plasma cell gene expression microarrays with modified ComBat.
BMC Bioinformatics. 2015 Feb 25;16:63. doi: 10.1186/s12859-015-0478-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验