Suppr超能文献

通过分子动力学模拟研究酪氨酸激酶 c-Src 的构象变化的网络方法。

Network approach of the conformational change of c-Src, a tyrosine kinase, by molecular dynamics simulation.

机构信息

Department of Physics, Pukyong National University, Busan, 48513, Republic of Korea.

Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea.

出版信息

Sci Rep. 2018 Apr 4;8(1):5673. doi: 10.1038/s41598-018-23964-5.

Abstract

Non-receptor tyrosine kinase c-Src plays a critical role in numerous cellular signalling pathways. Activation of c-Src from its inactive to the active state involves large-scale conformational changes, and is controlled by the phosphorylation state of two major phosphorylation sites, Tyr416 and Tyr527. A detailed mechanism for the entire conformational transition of c-Src via phosphorylation control of Tyr416 and Tyr527 is still elusive. In this study, we investigated the inactive-to-active conformational change of c-Src by targeted molecular dynamics simulation. Based on the simulation, we proposed a dynamical scenario for the activation process of c-Src. A detailed study of the conformational transition pathway based on network analysis suggests that Lys321 plays a key role in the c-Src activation process.

摘要

非受体酪氨酸激酶 c-Src 在许多细胞信号通路中发挥着关键作用。c-Src 从非活性状态到活性状态的激活涉及大规模构象变化,并且受两个主要磷酸化位点 Tyr416 和 Tyr527 的磷酸化状态控制。通过 Tyr416 和 Tyr527 的磷酸化控制来实现 c-Src 整个构象转变的详细机制仍然难以捉摸。在这项研究中,我们通过靶向分子动力学模拟研究了 c-Src 的非活性到活性构象变化。基于模拟,我们提出了 c-Src 激活过程的动力学情景。基于网络分析的构象转变途径的详细研究表明,Lys321 在 c-Src 激活过程中起着关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bca/5884825/ee0a007bc820/41598_2018_23964_Fig1_HTML.jpg

相似文献

2
Tyrosine Kinase Activation and Conformational Flexibility: Lessons from Src-Family Tyrosine Kinases.
Acc Chem Res. 2017 May 16;50(5):1193-1201. doi: 10.1021/acs.accounts.7b00012. Epub 2017 Apr 20.
3
Locking the active conformation of c-Src kinase through the phosphorylation of the activation loop.
J Mol Biol. 2014 Jan 23;426(2):423-35. doi: 10.1016/j.jmb.2013.10.001. Epub 2013 Oct 6.
4
Identification of targets of c-Src tyrosine kinase by chemical complementation and phosphoproteomics.
Mol Cell Proteomics. 2012 Aug;11(8):355-69. doi: 10.1074/mcp.M111.015750. Epub 2012 Apr 12.
5
Tyrosine 416 is phosphorylated in the closed, repressed conformation of c-Src.
PLoS One. 2013 Jul 26;8(7):e71035. doi: 10.1371/journal.pone.0071035. Print 2013.
6
Crosstalk between activated and inactivated c-Src in hepatocellular carcinoma.
Dis Markers. 2011;30(6):325-33. doi: 10.3233/DMA-2011-0792.
7
Conformational basis for SH2-Tyr(P)527 binding in Src inactivation.
J Biol Chem. 2006 Aug 18;281(33):23776-84. doi: 10.1074/jbc.M604219200. Epub 2006 Jun 21.
8
SRC tail phosphorylation is limited by structural changes in the regulatory tyrosine kinase Csk.
J Biol Chem. 2006 Dec 8;281(49):38004-12. doi: 10.1074/jbc.M607824200. Epub 2006 Oct 3.
9
The Activation of c-Src Tyrosine Kinase: Conformational Transition Pathway and Free Energy Landscape.
J Phys Chem B. 2017 Apr 20;121(15):3352-3363. doi: 10.1021/acs.jpcb.6b08409. Epub 2016 Oct 28.
10
Structural basis of constitutive c-Src kinase activity due to R175L and W118A mutations.
J Biomol Struct Dyn. 2023 Feb;41(2):634-645. doi: 10.1080/07391102.2021.2010600. Epub 2021 Dec 2.

引用本文的文献

2
SHP-1 tyrosine phosphatase binding to c-Src kinase phosphor-dependent conformations: A comparative structural framework.
PLoS One. 2023 Jan 13;18(1):e0278448. doi: 10.1371/journal.pone.0278448. eCollection 2023.
3
Mechanical force can enhance c-Src kinase activity by impairing autoinhibition.
Biophys J. 2022 Mar 1;121(5):684-691. doi: 10.1016/j.bpj.2022.01.028. Epub 2022 Feb 2.
5
Generating conformational transition paths with low potential-energy barriers for proteins.
J Comput Aided Mol Des. 2018 Aug;32(8):853-867. doi: 10.1007/s10822-018-0137-7. Epub 2018 Aug 1.

本文引用的文献

1
Online interactive analysis of protein structure ensembles with Bio3D-web.
Bioinformatics. 2016 Nov 15;32(22):3510-3512. doi: 10.1093/bioinformatics/btw482. Epub 2016 Jul 16.
2
Src protein-tyrosine kinase structure, mechanism, and small molecule inhibitors.
Pharmacol Res. 2015 Apr;94:9-25. doi: 10.1016/j.phrs.2015.01.003. Epub 2015 Feb 3.
3
Integrating protein structural dynamics and evolutionary analysis with Bio3D.
BMC Bioinformatics. 2014 Dec 10;15(1):399. doi: 10.1186/s12859-014-0399-6.
5
Weighted Implementation of Suboptimal Paths (WISP): An Optimized Algorithm and Tool for Dynamical Network Analysis.
J Chem Theory Comput. 2014 Feb 11;10(2):511-517. doi: 10.1021/ct4008603. Epub 2014 Jan 14.
6
Exploring residue component contributions to dynamical network models of allostery.
J Chem Theory Comput. 2012 Aug 14;8(8):2949-2961. doi: 10.1021/ct300377a. Epub 2012 Jul 5.
7
Introduction to network analysis in systems biology.
Sci Signal. 2011 Sep 6;4(190):tr5. doi: 10.1126/scisignal.2001965.
8
Dynamical networks in tRNA:protein complexes.
Proc Natl Acad Sci U S A. 2009 Apr 21;106(16):6620-5. doi: 10.1073/pnas.0810961106. Epub 2009 Apr 7.
9
The human disease network.
Proc Natl Acad Sci U S A. 2007 May 22;104(21):8685-90. doi: 10.1073/pnas.0701361104. Epub 2007 May 14.
10
Biological impacts and context of network theory.
J Exp Biol. 2007 May;210(Pt 9):1548-58. doi: 10.1242/jeb.003731.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验