Grills David C, Lymar Sergei V
Chemistry Division, Brookhaven National Laboratory, P.O. Box 5000, Upton, NY 11973-5000, USA.
Phys Chem Chem Phys. 2018 Apr 18;20(15):10011-10017. doi: 10.1039/c8cp00977e.
The solvated electron in CH3CN is scavenged by CO2 with a rate constant of 3.2 × 1010 M-1 s-1 to produce the carbon dioxide radical anion (CO2˙-), a strong and versatile reductant. Using pulse radiolysis with time-resolved IR detection, this radical is unambiguously identified by its absorption band at 1650 cm-1 corresponding to the antisymmetric CO2˙- stretch. This assignment is confirmed by 13C isotopic labelling experiments and DFT calculations. In neat CH3CN, CO2˙- decays on a ∼10 μs time scale via recombination with solvent-derived radicals (R˙) and solvated protons. Upon addition of formate (HCO2-), the radiation yield of CO2˙- is substantially increased due to H-atom abstraction by R˙ from HCO2- (R˙ + HCO2- → RH + CO2˙-), which occurs in two kinetically separated steps. The rapid step involves the stronger H-abstracting CN˙, CH3˙, and possibly, H˙ primary radicals, while the slower step is due to the less reactive, but more abundant radical, CH2CN˙. The removal of solvent radicals by HCO2- also results in over a hundredfold increase in the CO2˙- lifetime. CO2˙- scavenging experiments suggest that at 50 mM HCO2-, about 60% of the solvent-derived radicals are engaged in CO2˙- generation. Even under CO2 saturation, no formation of the radical adduct, (CO2)2˙-, could be detected on the microsecond time scale.
在乙腈(CH₃CN)中,溶剂化电子被二氧化碳清除,速率常数为3.2×10¹⁰ M⁻¹ s⁻¹,生成二氧化碳自由基阴离子(CO₂˙⁻),这是一种强且通用的还原剂。通过脉冲辐解和时间分辨红外检测,该自由基通过其在1650 cm⁻¹处对应于反对称CO₂˙⁻伸缩振动的吸收带被明确鉴定。¹³C同位素标记实验和密度泛函理论(DFT)计算证实了这一归属。在纯乙腈中,CO₂˙⁻通过与溶剂衍生的自由基(R˙)和溶剂化质子复合,在约10 μs的时间尺度上衰减。加入甲酸盐(HCO₂⁻)后,由于R˙从HCO₂⁻中夺取氢原子(R˙ + HCO₂⁻ → RH + CO₂˙⁻),CO₂˙⁻的辐射产率大幅增加,这一过程分两个动力学分离的步骤进行。快速步骤涉及更强的夺氢CN˙、CH₃˙,可能还有H˙初级自由基,而较慢的步骤是由于活性较低但更丰富的自由基CH₂CN˙。HCO₂⁻对溶剂自由基的清除也导致CO₂˙⁻寿命增加了一百多倍。CO₂˙⁻清除实验表明,在50 mM HCO₂⁻时,约60%的溶剂衍生自由基参与了CO₂˙⁻的生成。即使在二氧化碳饱和的情况下,在微秒时间尺度上也未检测到自由基加合物(CO₂)₂˙⁻的形成。