van Dolleweerd Craig J, Kessans Sarah A, Van de Bittner Kyle C, Bustamante Leyla Y, Bundela Rudranuj, Scott Barry, Nicholson Matthew J, Parker Emily J
Protein Science & Engineering, Callaghan Innovation, School of Biological Sciences , University of Canterbury , Private Bag 4800, Christchurch 8140 , New Zealand.
Department of Chemistry , University of Canterbury , 20 Kirkwood Avenue , Christchurch 8041 , New Zealand.
ACS Synth Biol. 2018 Apr 20;7(4):1018-1029. doi: 10.1021/acssynbio.7b00363. Epub 2018 Apr 12.
A modular and hierarchical DNA assembly platform for synthetic biology based on Golden Gate (Type IIS restriction enzyme) cloning is described. This enabling technology, termed MIDAS (for Modular Idempotent DNA Assembly System), can be used to precisely assemble multiple DNA fragments in a single reaction using a standardized assembly design. It can be used to build genes from libraries of sequence-verified, reusable parts and to assemble multiple genes in a single vector, with full user control over gene order and orientation, as well as control of the direction of growth (polarity) of the multigene assembly, a feature that allows genes to be nested between other genes or genetic elements. We describe the detailed design and use of MIDAS, exemplified by the reconstruction, in the filamentous fungus Penicillium paxilli, of the metabolic pathway for production of paspaline and paxilline, key intermediates in the biosynthesis of a range of indole diterpenes-a class of secondary metabolites produced by several species of filamentous fungi. MIDAS was used to efficiently assemble a 25.2 kb plasmid from 21 different modules (seven genes, each composed of three basic parts). By using a parts library-based system for construction of complex assemblies, and a unique set of vectors, MIDAS can provide a flexible route to assembling tailored combinations of genes and other genetic elements, thereby supporting synthetic biology applications in a wide range of expression hosts.
描述了一种基于金门(IIS型限制性内切酶)克隆的用于合成生物学的模块化分层DNA组装平台。这种名为MIDAS(模块化幂等DNA组装系统)的使能技术,可用于使用标准化组装设计在单个反应中精确组装多个DNA片段。它可用于从经过序列验证的可重复使用部件库构建基因,并在单个载体中组装多个基因,用户可完全控制基因顺序和方向,以及多基因组装的生长方向(极性),这一特性允许基因嵌套在其他基因或遗传元件之间。我们描述了MIDAS的详细设计和使用,以丝状真菌盘长孢状刺盘孢中生产巴斯帕灵和盘长孢状菌素(一系列吲哚二萜生物合成中的关键中间体,吲哚二萜是几种丝状真菌产生的一类次级代谢产物)的代谢途径的重建为例。MIDAS用于从21个不同模块(7个基因,每个基因由三个基本部分组成)高效组装一个25.2 kb的质粒。通过使用基于部件库的系统构建复杂组装体,以及一套独特的载体,MIDAS可以提供一条灵活的途径来组装定制的基因和其他遗传元件组合,从而支持在广泛的表达宿主中的合成生物学应用。