Department of Neuroscience, Division of Pharmacology and Toxicology, Waggoner Center for Alcohol and Addiction Research, Institutes for Neuroscience and Cell and Molecular Biology, University of Texas, Austin, Texas 78712.
Department of Anesthesia, Stanford University School of Medicine, Stanford, California 94305.
J Biol Chem. 2018 May 25;293(21):8264-8274. doi: 10.1074/jbc.RA118.002128. Epub 2018 Apr 5.
Benzodiazepines are positive allosteric modulators of the GABA receptor (GABAR), acting at the α-γ subunit interface to enhance GABAR function. GABA or benzodiazepine binding induces distinct conformational changes in the GABAR. The molecular rearrangements in the GABAR following benzodiazepine binding remain to be fully elucidated. Using two molecular models of the GABAR, we identified electrostatic interactions between specific amino acids at the α-γ subunit interface that were broken by, or formed after, benzodiazepine binding. Using two-electrode voltage clamp electrophysiology in oocytes, we investigated these interactions by substituting one or both amino acids of each potential pair. We found that Lys in the α subunit forms an electrostatic bond with Asp of the γ subunit after benzodiazepine binding and that this bond stabilizes the positively modified state of the receptor. Substitution of these two residues to cysteine and subsequent covalent linkage between them increased the receptor's sensitivity to low GABA concentrations and decreased its response to benzodiazepines, producing a GABAR that resembles a benzodiazepine-bound WT GABAR. Breaking this bond restored sensitivity to GABA to WT levels and increased the receptor's response to benzodiazepines. The α Lys and γ Asp interaction did not play a role in ethanol or neurosteroid modulation of GABAR, suggesting that different modulators induce different conformational changes in the receptor. These findings may help explain the additive or synergistic effects of modulators acting at the GABAR.
苯二氮䓬类药物是 GABA 受体 (GABAR) 的正变构调节剂,作用于 α-γ 亚基界面,增强 GABAR 功能。GABA 或苯二氮䓬类药物结合诱导 GABAR 发生独特的构象变化。苯二氮䓬类药物结合后 GABAR 的分子重排仍有待充分阐明。使用 GABAR 的两个分子模型,我们确定了 α-γ 亚基界面上特定氨基酸之间的静电相互作用,这些相互作用在苯二氮䓬类药物结合时被打破或形成。通过在卵母细胞中使用双电极电压钳电生理学,我们通过取代每个潜在对的一个或两个氨基酸来研究这些相互作用。我们发现,苯二氮䓬类药物结合后,α 亚基中的赖氨酸与 γ 亚基中的天冬氨酸形成静电键,该键稳定了受体的正修饰状态。将这两个残基替换为半胱氨酸,并在它们之间形成共价键,增加了受体对低 GABA 浓度的敏感性,降低了其对苯二氮䓬类药物的反应,产生了一种类似于苯二氮䓬类药物结合的 WT GABAR 的受体。打破该键可将 GABA 对 WT 水平的敏感性恢复至正常水平,并增加受体对苯二氮䓬类药物的反应。α 赖氨酸和 γ 天冬氨酸的相互作用在 GABA 对乙醇或神经甾体的调制中不起作用,这表明不同的调节剂在受体中诱导不同的构象变化。这些发现可能有助于解释作用于 GABAR 的调节剂的相加或协同作用。