State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Beijing, 100029, P. R. China.
Nanoscale. 2018 Apr 19;10(15):7218-7227. doi: 10.1039/c8nr00152a.
ZnO as a promising electron transport layer (ETL) to TiO2 for perovskite solar cells (PSCs) has achieved a power conversion efficiency (PCE) of 18.9%; however, this is still lower than that obtained for TiO2-based PSCs (higher than 20%). Herein, we report the fabrication of high-efficiency methylammonium (MA) and Cs co-alloyed formamidinium (FA) triple cation perovskite based ZnO PSCs via delicate control of the cation compositions and annealing temperatures. By virtue of structural, morphological, spectral and electrochemical characterizations and analysis, we found that the incorporation of MA and Cs into FA perovskite enables the formation of a highly crystalline black phase perovskite with reduced surface roughness, which inhibits charge recombination and promotes electron transfer at the ZnO/perovskite/spiro-OMeTAD interfaces and hence improves Jsc and FF values of the cell. As a result, the ZnO PSC based on MA0.1FA0.75Cs0.15PbI3 annealed at 110 °C achieved a PCE as high as 20.09%, exceeding the previous highest efficiency recorded for ZnO ETL based PSCs. The optimized MA0.1FA0.75Cs0.15PbI3 material demonstrated excellent reproducibility and long-term cell durability under ambient conditions within 1000 h. Particularly, the incorporation of a small amount of Br into the triple cation perovskite, i.e., MA0.1FA0.75Cs0.15PbI2.9Br0.1 led to a further enhancement in PCE of up to 20.44%, which is comparable with the best-performing MA and Cs-containing FA-based lead halide TiO2 PSCs.
氧化锌(ZnO)作为一种有前途的电子传输层(ETL)取代 TiO2 用于钙钛矿太阳能电池(PSCs),已实现 18.9%的功率转换效率(PCE);然而,这仍然低于基于 TiO2 的 PSCs(高于 20%)的效率。在此,我们通过精细控制阳离子组成和退火温度,报告了高效的甲脒(MA)和铯共合金化甲脒(FA)三阳离子钙钛矿基 ZnO PSCs 的制备。通过结构、形态、光谱和电化学特性及分析,我们发现 MA 和 Cs 掺入 FA 钙钛矿中可以形成高度结晶的黑相钙钛矿,表面粗糙度降低,从而抑制电荷复合并促进 ZnO/钙钛矿/spiro-OMeTAD 界面处的电子转移,进而提高电池的 Jsc 和 FF 值。结果,在 110°C 下退火的基于 MA0.1FA0.75Cs0.15PbI3 的 ZnO PSC 实现了高达 20.09%的 PCE,超过了之前记录的基于 ZnO ETL 的 PSCs 的最高效率。优化后的 MA0.1FA0.75Cs0.15PbI3 材料在环境条件下具有出色的重现性和长达 1000 小时的长期电池稳定性。特别地,在三阳离子钙钛矿中少量掺入 Br,即 MA0.1FA0.75Cs0.15PbI2.9Br0.1,可将 PCE 进一步提高至 20.44%,与性能最佳的含 MA 和 Cs 的 FA 基卤化铅 TiO2 PSCs 相当。