Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Calle 47 y 115, B1900AJI, La Plata, Buenos Aires, Argentina.
Departamento de Farmacología, Instituto Nacional de Medicamentos (INAME), Administración Nacional de Medicamentos, Alimentos y Tecnología Médica (ANMAT), CABA, Buenos Aires, Argentina.
Colloids Surf B Biointerfaces. 2018 Jul 1;167:73-81. doi: 10.1016/j.colsurfb.2018.03.052. Epub 2018 Mar 31.
Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) represent promising alternatives for drug delivery to the central nervous system. In the present work, four different nanoformulations of the antiepileptic drug Carbamazepine (CBZ) were designed and prepared by the homogenization/ultrasonication method, with encapsulation efficiencies ranging from 82.8 to 93.8%. The formulations remained stable at 4 °C for at least 3 months. Physicochemical and microscopic characterization were performed by photon correlation spectroscopy (PCS), transmission electron microscopy (TEM), atomic force microscopy (AFM); thermal properties by differential scanning calorimetry (DSC), thermogravimetry (TGA) and X-ray diffraction analysis (XRD). The results indicated the presence of spherical shape nanoparticles with a mean particle diameter around 160 nm in a narrow size distribution; the entrapped CBZ displayed an amorphous state. The in vitro release profile of CBZ fitted into a Baker-Lonsdale model for spherical matrices and almost the 100% of the encapsulated drug was released in a controlled manner during the first 24 h. The apparent permeability of CBZ-loaded nanoparticles through a cell monolayer model was similar to that of the free drug. In vivo experiments in a mice model of seizure suggested protection by CBZ-NLC against seizures for at least 2 h after intraperitoneal administration. The developed CBZ-loaded lipid nanocarriers displayed optimal characteristics of size, shape and drug release and possibly represent a promising tool to improve the treatment of refractory epilepsy linked to efflux transporters upregulation.
固体脂质纳米粒(SLN)和纳米结构脂质载体(NLC)是一种有前途的药物传递系统,可用于向中枢神经系统输送药物。在本工作中,通过匀化/超声法设计并制备了四种不同的抗癫痫药物卡马西平(CBZ)的纳米制剂,包封效率在 82.8%至 93.8%之间。这些制剂在 4°C 下至少稳定 3 个月。通过光子相关光谱法(PCS)、透射电子显微镜(TEM)、原子力显微镜(AFM)进行了物理化学和微观特性的研究;通过差示扫描量热法(DSC)、热重分析(TGA)和 X 射线衍射分析(XRD)进行了热特性的研究。结果表明,存在粒径约为 160nm 的球形纳米粒子,粒径分布较窄;包封的 CBZ 呈现无定形态。CBZ 的体外释放曲线符合球形基质的 Baker-Lonsdale 模型,在最初的 24 小时内,几乎 100%的包封药物以受控的方式释放。载药纳米粒通过细胞单层模型的表观渗透率与游离药物相似。在癫痫小鼠模型中的体内实验表明,CBZ-NLC 腹腔给药后至少 2 小时可预防癫痫发作。所开发的载 CBZ 脂质纳米载体具有理想的粒径、形状和药物释放特性,可能是改善与外排转运蛋白上调相关的难治性癫痫治疗的有前途的工具。