Suppr超能文献

电各向极化 PLLA 纳米纤维作为具有改善神经突生成能力的神经组织工程支架。

Electrically polarized PLLA nanofibers as neural tissue engineering scaffolds with improved neuritogenesis.

机构信息

Department of Materials and Ceramic Engineering, CICECO, Universidade de Aveiro, 3810-193 Aveiro, Portugal.

Institute of Biomedicine (iBiMED) and Centre for Cell Biology (CBC), Department of Medical Sciences, Universidade de Aveiro, 3810-193 Aveiro, Portugal.

出版信息

Colloids Surf B Biointerfaces. 2018 Jul 1;167:93-103. doi: 10.1016/j.colsurfb.2018.03.050. Epub 2018 Mar 30.

Abstract

Tissue engineering is evolving towards the production of smart platforms exhibiting stimulatory cues to guide tissue regeneration. This work explores the benefits of electrical polarization to produce more efficient neural tissue engineering platforms. Poly (l-lactic) acid (PLLA)-based scaffolds were prepared as solvent cast films and electrospun aligned nanofibers, and electrically polarized by an in-lab built corona poling device. The characterization of the platforms by thermally stimulated depolarization currents reveals a polarization of 60 × 10C cm that is stable on poled electrospun nanofibers for up to 6 months. Further in vitro studies using neuroblastoma cells reveals that platforms' polarization potentiates Retinoic Acid-induced neuronal differentiation. Additionally, in differentiating embryonic cortical neurons, poled aligned nanofibers further increased neurite outgrowth by 30% (+70 μm) over non-poled aligned nanofibers, and by 50% (+100 μm) over control conditions. Therefore, the synergy of topographical cues and electrical polarization of poled aligned nanofibers places them as promising biocompatible and bioactive platforms for neural tissue regeneration. Given their long lasting induced polarization, these PLLA poled nanofibrous scaffolds can be envisaged as therapeutic devices of long shelf life for neural repair applications.

摘要

组织工程学正朝着生产具有刺激线索的智能平台的方向发展,以指导组织再生。本工作探讨了电极化在制备更有效的神经组织工程平台方面的益处。聚(L-丙交酯)(PLLA)基支架被制备为溶剂浇铸薄膜和电纺的取向纳米纤维,并通过实验室制造的电晕极化设备进行电极化。通过热刺激去极化电流对平台进行的表征揭示了 60×10C cm 的极化强度,在长达 6 个月的时间内,极化强度在极化的电纺纳米纤维上是稳定的。进一步使用神经母细胞瘤细胞的体外研究表明,平台的极化增强了维甲酸诱导的神经元分化。此外,在诱导的胚胎皮质神经元中,极化的取向纳米纤维比非极化的取向纳米纤维进一步增加了 30%(+70 μm)的神经突生长,比对照条件增加了 50%(+100 μm)。因此,取向纳米纤维的拓扑线索和电极化的协同作用使它们成为具有生物相容性和生物活性的神经组织再生的有前途的平台。鉴于其持久的诱导极化,这些 PLLA 极化纳米纤维支架可以被设想为用于神经修复应用的具有长货架寿命的治疗设备。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验