Predictive model Research Center, Korea Institute of Toxicology, Korea Research Institute of Chemical Technology, Daejeon, South Korea.
Research Center for Safety Pharmacology, Korea Institute of Toxicology, Research Institute of Chemical Technology, Daejeon, South Korea.
PLoS One. 2018 Apr 9;13(4):e0195577. doi: 10.1371/journal.pone.0195577. eCollection 2018.
Vandetanib, a multi-kinase inhibitor used for the treatment of various cancers, has been reported to induce several adverse cardiac effects. However, the underlying mechanisms of vandetanib-induced cardiotoxicity are unclear. This study aimed to investigate the mechanism of vandetanib-induced cardiotoxicity using intracellular electrophysiological recordings on human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), rabbit Purkinje fibers, and HEK293 cells transiently expressing human ether-a-go-go-related gene (hERG; the rapidly activating delayed rectifier K+ channel, IKr), KCNQ1/KCNE1 (the slowly activating delayed rectifier K+ current, IKs), KCNJ2 (the inwardly rectifying K+ current, IK1) or SCN5A (the inward Na+ current, INa). Purkinje fiber assays and ion channel studies showed that vandetanib at concentrations of 1 and 3 μM inhibited the hERG currents and prolonged the action potential duration. Alanine scanning and in silico hERG docking studies demonstrated that Y652 and F656 in the hERG S6 domain play critical roles in vandetanib binding. In hiPSC-CMs, vandetanib markedly reduced the maximum rate of depolarization during the AP upstroke. Ion channel studies revealed that hiPSC-CMs were more sensitive to inhibition of the INa by vandetanib than in a heterogeneously expressed HEK293 cell model, consistent with the changes in the AP parameters of hiPSC-CMs. The subclasses of Class I antiarrhythmic drugs inhibited INa currents in a dose-dependent manner in hiPSC-CMs and SCN5A-encoded HEK293 cells. The inhibitory potency of vandetanib for INa was much higher in hiPSC-CMs (IC50: 2.72 μM) than in HEK293 cells (IC50: 36.63 μM). These data suggest that AP and INa assays using hiPSC-CMs are useful electrophysiological models for prediction of drug-induced cardiotoxicity.
凡德他尼是一种多激酶抑制剂,用于治疗多种癌症,已被报道可引起多种不良心脏效应。然而,凡德他尼致心脏毒性的潜在机制尚不清楚。本研究旨在使用人类诱导多能干细胞衍生的心肌细胞(hiPSC-CMs)、兔浦肯野纤维和瞬时表达人 ether-a-go-go 相关基因(hERG;快速激活延迟整流钾通道,IKr)、KCNQ1/KCNE1(缓慢激活延迟整流钾电流,IKs)、KCNJ2(内向整流钾电流,IK1)或 SCN5A(内向钠电流,INa)的 HEK293 细胞进行细胞内电生理记录,来研究凡德他尼致心脏毒性的机制。浦肯野纤维检测和离子通道研究表明,浓度为 1 和 3 μM 的凡德他尼抑制 hERG 电流并延长动作电位时程。丙氨酸扫描和计算机 hERG 对接研究表明,hERG S6 结构域中的 Y652 和 F656 残基在凡德他尼结合中起关键作用。在 hiPSC-CMs 中,凡德他尼明显降低了 AP 除极时的最大去极化速率。离子通道研究表明,hiPSC-CMs 对凡德他尼抑制 INa 的敏感性高于异质表达的 HEK293 细胞模型,与 hiPSC-CMs 的 AP 参数变化一致。I 类抗心律失常药物的亚类以剂量依赖的方式抑制 hiPSC-CMs 和 SCN5A 编码的 HEK293 细胞中的 INa 电流。凡德他尼对 INa 的抑制作用在 hiPSC-CMs 中(IC50:2.72 μM)比在 HEK293 细胞中(IC50:36.63 μM)高得多。这些数据表明,使用 hiPSC-CMs 的 AP 和 INa 检测是预测药物致心脏毒性的有用电生理模型。