Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, 27708, USA.
Department of Electronics and Nanoengineering, Aalto University, P. O. Box 15500,, FI-00076, Aalto, Finland.
Nat Commun. 2018 Apr 9;9(1):1342. doi: 10.1038/s41467-018-03778-9.
Recent advances in gradient metasurfaces have shown that by locally controlling the bianisotropic response of the cells one can ensure full control of refraction, that is, arbitrarily redirect the waves without scattering into unwanted directions. In this work, we propose and experimentally verify the use of an acoustic cell architecture that provides enough degrees of freedom to fully control the bianisotropic response and minimizes the losses. The versatility of the approach is shown through the design of three refractive metasurfaces capable of redirecting a normally incident plane wave to 60°, 70°, and 80° on transmission. The efficiency of the bianisotropic designs is over 90%, much higher than the corresponding generalized Snell's law based designs (81%, 58%, and 35%). The proposed strategy opens a new way of designing practical and highly efficient bianisotropic metasurfaces for different functionalities, enabling nearly ideal control over the energy flow through thin metasurfaces.
近年来,梯度超表面的发展表明,通过局部控制单元的双各向异性响应,可以实现对折射的完全控制,即可以任意将波引导至所需方向,而不会散射到不需要的方向。在这项工作中,我们提出并实验验证了使用声学单元结构的方法,该方法提供了足够的自由度来完全控制双各向异性响应并最小化损耗。通过设计三种折射超表面,该方法的多功能性得到了展示,这三种折射超表面能够将垂直入射的平面波分别折射到 60°、70°和 80°。双各向异性设计的效率超过 90%,远高于相应的基于广义斯涅尔定律的设计(81%、58%和 35%)。所提出的策略为设计用于不同功能的实用且高效的双各向异性超表面开辟了一条新途径,能够通过薄超表面实现对能量流的近乎理想控制。