Suppr超能文献

全光孤子 X 结中的强化学习。

All-Optical Reinforcement Learning In Solitonic X-Junctions.

机构信息

Department of Fundamental and Applied Sciences for Engineering, Sapienza Università di Roma, via Scarpa 16, 00161, Roma, Italy.

Centre for Disruptive Photonic Technologies, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore.

出版信息

Sci Rep. 2018 Apr 9;8(1):5716. doi: 10.1038/s41598-018-24084-w.

Abstract

Ethology has shown that animal groups or colonies can perform complex calculation distributing simple decision-making processes to the group members. For example ant colonies can optimize the trajectories towards the food by performing both a reinforcement (or a cancellation) of the pheromone traces and a switch from one path to another with stronger pheromone. Such ant's processes can be implemented in a photonic hardware to reproduce stigmergic signal processing. We present innovative, completely integrated X-junctions realized using solitonic waveguides which can provide both ant's decision-making processes. The proposed X-junctions can switch from symmetric (50/50) to asymmetric behaviors (80/20) using optical feedbacks, vanishing unused output channels or reinforcing the used ones.

摘要

动物群体或群体可以通过将简单的决策过程分配给群体成员来执行复杂的计算,这一行为在动物行为学中已经得到证实。例如,蚁群可以通过对信息素痕迹进行强化(或取消)以及从一条路径切换到另一条具有更强信息素的路径,来优化通往食物的轨迹。这些蚂蚁的过程可以在光子硬件中实现,以再现连锁信号处理。我们提出了创新的、完全集成的 X 结,使用孤子波导实现,它可以提供蚂蚁的两种决策过程。所提出的 X 结可以使用光反馈从对称(50/50)切换到不对称行为(80/20),即关闭未使用的输出通道或增强使用的输出通道。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d29/5890259/098c1ea68d6d/41598_2018_24084_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验