Amorim Paulo, Goudon Thierry, Peruani Fernando
Instituto de Matemática, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, Centro de Tecnologia - Bloco C, Cidade Universitária - Ilha do Fundão, Caixa Postal 68530, 21941-909, Rio de Janeiro, RJ, Brasil.
Inria, CNRS, LJAD, Université Côte d'Azur, Nice, France.
J Math Biol. 2019 Mar;78(4):943-984. doi: 10.1007/s00285-018-1298-7. Epub 2018 Oct 9.
We analyze an ant navigation model based on Weber's law, where the ants move across a pheromone landscape sensing the area using two antennae. The key parameter of the model is the angle [Formula: see text] representing the span of the ant's sensing area. We show that when [Formula: see text] ants are able to follow (straight) pheromone trails proving that for initial conditions close to the trail, there exists a Lyapunov function that ensures ant trajectories converge on and follow the pheromone trail, with these solutions being locally asymptotically stable. Furthermore, we indicate that the features of the ant trajectories such as convergence speed or oscillation wave length are controlled by the angle [Formula: see text]. For [Formula: see text], we present numerical evidence that indicates that ants are unable to follow pheromone trails. We also assess our model by comparing it to previous experimental results, showing that the solutions' behavior falls into biologically meaningful ranges. Our work provides solid mathematical support for experimental studies where it was found that ant perception follows a Weber's law, by proving that such models lead to the desired robust and stable trail following.
我们分析了一种基于韦伯定律的蚂蚁导航模型,在该模型中,蚂蚁通过两根触角感知信息素环境并在其中移动。模型的关键参数是表示蚂蚁感知区域跨度的角度[公式:见原文]。我们证明,当[公式:见原文]时,蚂蚁能够追踪(直线)信息素轨迹,这表明对于接近轨迹的初始条件,存在一个李雅普诺夫函数,可确保蚂蚁轨迹收敛并沿着信息素轨迹行进,且这些解是局部渐近稳定的。此外,我们指出蚂蚁轨迹的特征,如收敛速度或振荡波长,由角度[公式:见原文]控制。对于[公式:见原文],我们给出了数值证据,表明蚂蚁无法追踪信息素轨迹。我们还将我们的模型与先前的实验结果进行比较来评估它,结果表明解的行为落在生物学上有意义的范围内。我们的工作为实验研究提供了坚实的数学支持,在实验研究中发现蚂蚁的感知遵循韦伯定律,通过证明此类模型会导致所需的稳健且稳定的轨迹追踪。