a Departamento de Física, Instituto de Física del Sur (IFISUR) , Universidad Nacional del Sur (UNS), CONICET , Bahía Blanca , Argentina.
b Faculty of Mathematical, Physical and Natural Sciences, Department of Biotechnology , University of Verona , Verona , Italy.
J Biomol Struct Dyn. 2019 Apr;37(6):1597-1615. doi: 10.1080/07391102.2018.1462733. Epub 2018 May 4.
γ-aminobutyric acid-type A (GABA) receptors mediate fast synaptic inhibition in the central nervous system of mammals. They are modulated via several sites by numerous compounds, which include GABA, benzodiazepines, ethanol, neurosteroids and anaesthetics among others. Due to their potential as targets of novel drugs, a detailed knowledge of their structure-function relationships is needed. Here, we present the model of the αβγ subtype GABA receptor in the APO state and in complex with selected ligands, including agonists, antagonists and allosteric modulators. The model is based on the crystallographic structure of the human β homopentamer GABA receptor. The complexes were refined using atomistic molecular dynamics simulations. This allowed a broad description of the binding modes and the detection of important interactions in agreement with experimental information. From the best of our knowledge, this is the only model of the αβγ GABA receptor that represents altogether the desensitized state of the channel and comprehensively describes the interactions of ligands of the orthosteric and benzodiazepines binding sites in agreement with the available experimental data. Furthermore, it is able to explain small differences regarding the binding of a variety of chemically divergent ligands. Finally, this new model may pave the way for the design of focused experimental studies that will allow a deeper description of the receptor.
γ-氨基丁酸 A 型 (GABA) 受体介导哺乳动物中枢神经系统的快速突触抑制。它们通过许多化合物的多个位点进行调节,这些化合物包括 GABA、苯二氮䓬类、乙醇、神经甾体和麻醉剂等。由于它们作为新型药物靶点的潜力,因此需要详细了解它们的结构-功能关系。在这里,我们展示了 APO 状态和与选定配体(包括激动剂、拮抗剂和变构调节剂)结合的 αβγ 亚型 GABA 受体模型。该模型基于人β同五聚体 GABA 受体的晶体结构。使用原子分子动力学模拟对复合物进行了细化。这允许对结合模式进行广泛描述,并检测与实验信息一致的重要相互作用。据我们所知,这是唯一能够代表通道脱敏状态并全面描述正位和苯二氮䓬结合位点配体相互作用的 αβγ GABA 受体模型,与可用的实验数据一致。此外,它能够解释关于各种化学差异配体结合的细微差异。最后,这个新模型可能为设计有针对性的实验研究铺平道路,从而能够更深入地描述受体。