Suppr超能文献

高GC含量下嗜多色链霉菌中Cas9介导的基因组编辑及生物合成基因簇激活

High GC Content Cas9-Mediated Genome-Editing and Biosynthetic Gene Cluster Activation in Saccharopolyspora erythraea.

作者信息

Liu Yong, Wei Wen-Ping, Ye Bang-Ce

机构信息

Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , China.

Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences , Zhejiang University of Technology , Hangzhou 310014 , Zhejiang , China.

出版信息

ACS Synth Biol. 2018 May 18;7(5):1338-1348. doi: 10.1021/acssynbio.7b00448. Epub 2018 Apr 17.

Abstract

The overexpression of bacterial secondary metabolite biosynthetic enzymes is the basis for industrial overproducing strains. Genome editing tools can be used to further improve gene expression and yield. Saccharopolyspora erythraea produces erythromycin, which has extensive clinical applications. In this study, the CRISPR-Cas9 system was used to edit genes in the S. erythraea genome. A temperature-sensitive plasmid containing the PermE promoter, to drive Cas9 expression, and the Pj23119 and PkasO promoters, to drive sgRNAs, was designed. Erythromycin esterase, encoded by S. erythraea SACE_1765, inactivates erythromycin by hydrolyzing the macrolactone ring. Sequencing and qRT-PCR confirmed that reporter genes were successfully inserted into the SACE_1765 gene. Deletion of SACE_1765 in a high-producing strain resulted in a 12.7% increase in erythromycin levels. Subsequent PermE- egfp knock-in at the SACE_0712 locus resulted in an 80.3% increase in erythromycin production compared with that of wild type. Further investigation showed that PermE promoter knock-in activated the erythromycin biosynthetic gene clusters at the SACE_0712 locus. Additionally, deletion of indA (SACE_1229) using dual sgRNA targeting without markers increased the editing efficiency to 65%. In summary, we have successfully applied Cas9-based genome editing to a bacterial strain, S. erythraea, with a high GC content. This system has potential application for both genome-editing and biosynthetic gene cluster activation in Actinobacteria.

摘要

细菌次级代谢物生物合成酶的过表达是工业高产菌株的基础。基因组编辑工具可用于进一步提高基因表达和产量。糖多孢红霉菌产生的红霉素具有广泛的临床应用。在本研究中,CRISPR-Cas9系统被用于编辑糖多孢红霉菌基因组中的基因。设计了一种温度敏感型质粒,其含有驱动Cas9表达的PermE启动子以及驱动sgRNAs的Pj23119和PkasO启动子。糖多孢红霉菌SACE_1765编码的红霉素酯酶通过水解大环内酯环使红霉素失活。测序和qRT-PCR证实报告基因已成功插入SACE_1765基因。在高产菌株中缺失SACE_1765导致红霉素水平提高了12.7%。随后在SACE_0712位点进行PermE-egfp敲入,与野生型相比,红霉素产量提高了80.3%。进一步研究表明,PermE启动子敲入激活了SACE_0712位点的红霉素生物合成基因簇。此外,使用无标记的双sgRNA靶向缺失indA(SACE_1229)可将编辑效率提高到65%。总之,我们已成功地将基于Cas9的基因组编辑应用于高GC含量的细菌菌株——糖多孢红霉菌。该系统在放线菌的基因组编辑和生物合成基因簇激活方面具有潜在应用价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验