Suppr超能文献

从终点模拟看蛋白质界面上水的过剩化学势。

The Excess Chemical Potential of Water at the Interface with a Protein from End Point Simulations.

机构信息

Center for Biophysics and Computational Biology , Department of Chemistry , and Institute for Computational Molecular Science , Temple University , Philadelphia , Pennsylvania 19122 , United States.

Division of Chemical Engineering, Graduate School of Engineering Science , Osaka University , Toyonaka , Osaka 560-8531 , Japan.

出版信息

J Phys Chem B. 2018 May 3;122(17):4700-4707. doi: 10.1021/acs.jpcb.8b02666. Epub 2018 Apr 23.

Abstract

We use end point simulations to estimate the excess chemical potential of water in the homogeneous liquid and at the interface with a protein in solution. When the pure liquid is taken as the reference, the excess chemical potential of interfacial water is the difference between the solvation free energy of a water molecule at the interface and in the bulk. Using the homogeneous liquid as an example, we show that the solvation free energy for growing a water molecule can be estimated by applying UWHAM to the simulation data generated from the initial and final states (i.e., "the end points") instead of multistate free energy perturbation simulations because of the possible overlaps of the configurations sampled at the end points. Then end point simulations are used to estimate the solvation free energy of water at the interface with a protein in solution. The estimate of the solvation free energy at the interface from two simulations at the end points agrees with the benchmark using 32 states within a 95% confidence interval for most interfacial locations. The ability to accurately estimate the excess chemical potential of water from end point simulations facilitates the statistical thermodynamic analysis of diverse interfacial phenomena. Our focus is on analyzing the excess chemical potential of water at protein receptor binding sites with the goal of using this information to assist in the design of tight binding ligands.

摘要

我们使用终点模拟来估计均匀液相和与溶液中蛋白质界面处水的过剩化学势。当以纯液相为参比时,界面处水的过剩化学势是界面上水分子的溶剂化自由能与体相中的溶剂化自由能之差。以均匀液相为例,我们表明,通过将 UWHAM 应用于从初始和最终状态(即“终点”)生成的模拟数据,可以估计生长水分子的溶剂化自由能,而无需进行多态自由能微扰模拟,因为在终点处采样的构型可能会重叠。然后,使用终点模拟来估计与溶液中蛋白质界面处水的溶剂化自由能。在大多数界面位置,从两个终点模拟中估算的界面溶剂化自由能与使用 32 个状态的基准值在 95%置信区间内一致。从终点模拟准确估计水的过剩化学势的能力促进了对各种界面现象的统计热力学分析。我们的重点是分析蛋白质受体结合位点上水的过剩化学势,目标是利用这些信息来协助设计紧密结合配体。

相似文献

1
The Excess Chemical Potential of Water at the Interface with a Protein from End Point Simulations.
J Phys Chem B. 2018 May 3;122(17):4700-4707. doi: 10.1021/acs.jpcb.8b02666. Epub 2018 Apr 23.
2
Relationship between Solvation Thermodynamics from IST and DFT Perspectives.
J Phys Chem B. 2017 Apr 20;121(15):3825-3841. doi: 10.1021/acs.jpcb.6b12889. Epub 2017 Feb 28.
3
The Role of Interfacial Water in Protein-Ligand Binding: Insights from the Indirect Solvent Mediated Potential of Mean Force.
J Chem Theory Comput. 2018 Feb 13;14(2):512-526. doi: 10.1021/acs.jctc.7b01076. Epub 2018 Jan 12.
6
Using Grand Canonical Monte Carlo Simulations to Understand the Role of Interfacial Fluctuations on Solvation at the Water-Vapor Interface.
J Phys Chem B. 2016 Sep 15;120(36):9697-707. doi: 10.1021/acs.jpcb.6b05237. Epub 2016 Aug 31.
7
Distinct role of hydration water in protein misfolding and aggregation revealed by fluctuating thermodynamics analysis.
Acc Chem Res. 2015 Apr 21;48(4):956-65. doi: 10.1021/acs.accounts.5b00032. Epub 2015 Apr 6.

引用本文的文献

4
Solvation Thermodynamics from the Perspective of Endpoints DFT.
J Phys Chem B. 2020 Dec 31;124(52):11771-11782. doi: 10.1021/acs.jpcb.0c08988. Epub 2020 Dec 11.
5
Cavity Particle in Aqueous Solution with a Hydrophobic Solute: Structure, Energetics, and Functionals.
J Phys Chem B. 2020 Jun 25;124(25):5220-5237. doi: 10.1021/acs.jpcb.0c02721. Epub 2020 Jun 12.
6
The UWHAM and SWHAM Software Package.
Sci Rep. 2019 Feb 26;9(1):2803. doi: 10.1038/s41598-019-39420-x.

本文引用的文献

1
The Role of Interfacial Water in Protein-Ligand Binding: Insights from the Indirect Solvent Mediated Potential of Mean Force.
J Chem Theory Comput. 2018 Feb 13;14(2):512-526. doi: 10.1021/acs.jctc.7b01076. Epub 2018 Jan 12.
2
Stratified UWHAM and Its Stochastic Approximation for Multicanonical Simulations Which Are Far from Equilibrium.
J Chem Theory Comput. 2017 Oct 10;13(10):4660-4674. doi: 10.1021/acs.jctc.7b00651. Epub 2017 Sep 28.
3
Relationship between Solvation Thermodynamics from IST and DFT Perspectives.
J Phys Chem B. 2017 Apr 20;121(15):3825-3841. doi: 10.1021/acs.jpcb.6b12889. Epub 2017 Feb 28.
5
A Stochastic Solution to the Unbinned WHAM Equations.
J Phys Chem Lett. 2015 Oct 1;6(19):3834-40. doi: 10.1021/acs.jpclett.5b01771. Epub 2015 Sep 14.
6
Pathways to dewetting in hydrophobic confinement.
Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):8181-6. doi: 10.1073/pnas.1503302112. Epub 2015 Jun 22.
7
Guidelines for the analysis of free energy calculations.
J Comput Aided Mol Des. 2015 May;29(5):397-411. doi: 10.1007/s10822-015-9840-9. Epub 2015 Mar 26.
8
Ermod: fast and versatile computation software for solvation free energy with approximate theory of solutions.
J Comput Chem. 2014 Aug 5;35(21):1592-608. doi: 10.1002/jcc.23651. Epub 2014 Jun 13.
10
Water structural transformation at molecular hydrophobic interfaces.
Nature. 2012 Nov 22;491(7425):582-5. doi: 10.1038/nature11570.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验