Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; Maastricht Brain Imaging Center, Maastricht, The Netherlands.
Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; Maastricht Brain Imaging Center, Maastricht, The Netherlands.
Cortex. 2018 Jun;103:142-152. doi: 10.1016/j.cortex.2018.03.001. Epub 2018 Mar 9.
The assessment of corticospinal excitability by means of transcranial magnetic stimulation-induced motor evoked potentials is an established diagnostic tool in neurophysiology and a widely used procedure in fundamental brain research. However, concern about low reliability of these measures has grown recently. One possible cause of high variability of MEPs under identical acquisition conditions could be the influence of oscillatory neuronal activity on corticospinal excitability. Based on research showing that transcranial alternating current stimulation can entrain neuronal oscillations we here test whether alpha or beta frequency tACS can influence corticospinal excitability in a phase-dependent manner. We applied tACS at individually calibrated alpha- and beta-band oscillation frequencies, or we applied sham tACS. Simultaneous single TMS pulses time locked to eight equidistant phases of the ongoing tACS signal evoked MEPs. To evaluate offline effects of stimulation frequency, MEP amplitudes were measured before and after tACS. To evaluate whether tACS influences MEP amplitude, we fitted one-cycle sinusoids to the average MEPs elicited at the different phase conditions of each tACS frequency. We found no frequency-specific offline effects of tACS. However, beta-frequency tACS modulation of MEPs was phase-dependent. Post hoc analyses suggested that this effect was specific to participants with low (<19 Hz) intrinsic beta frequency. In conclusion, by showing that beta tACS influences MEP amplitude in a phase-dependent manner, our results support a potential role attributed to neuronal oscillations in regulating corticospinal excitability. Moreover, our findings may be useful for the development of TMS protocols that improve the reliability of MEPs as a meaningful tool for research applications or for clinical monitoring and diagnosis.
经颅磁刺激诱发运动诱发电位评估是神经生理学中一种既定的诊断工具,也是基础脑研究中广泛使用的程序。然而,最近人们对这些测量结果可靠性低的担忧日益增加。在相同采集条件下,MEP 高度可变性的一个可能原因可能是振荡神经元活动对皮质脊髓兴奋性的影响。基于研究表明,经颅交流电刺激可以引发神经元振荡,我们在这里测试是否 alpha 或 beta 频带 tACS 可以以相位依赖的方式影响皮质脊髓兴奋性。我们应用个体校准的 alpha 和 beta 频带振荡频率的 tACS,或应用 sham tACS。同时将单个 TMS 脉冲与正在进行的 tACS 信号的八个等距相位锁定,以引发 MEPs。为了评估刺激频率的离线效应,在 tACS 之前和之后测量 MEP 幅度。为了评估 tACS 是否影响 MEP 幅度,我们将平均 MEP 拟合到每个 tACS 频率的不同相位条件下的单周期正弦曲线。我们没有发现 tACS 的特定频率离线效应。然而,beta 频带 tACS 对 MEPs 的调制是相位依赖的。事后分析表明,这种效应是特定于固有 beta 频率较低(<19 Hz)的参与者。总之,通过显示 beta tACS 以相位依赖的方式影响 MEP 幅度,我们的结果支持了归因于神经元振荡调节皮质脊髓兴奋性的潜在作用。此外,我们的发现可能对 TMS 协议的发展有用,这些协议可以提高 MEP 的可靠性,作为研究应用或临床监测和诊断的有意义工具。