Department of Radiation Oncology, Laura and Isaac Perlmutter Cancer Center New York University Langone Health, New York, NY, 10016, USA.
Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA.
Med Phys. 2018 Jun;45(6):2377-2387. doi: 10.1002/mp.12904. Epub 2018 Apr 25.
Through-plane motion introduces uncertainty in three-dimensional (3D) motion monitoring when using single-slice on-board imaging (OBI) modalities such as cine MRI. We propose a principal component analysis (PCA)-based framework to determine the optimal imaging plane to minimize the through-plane motion for single-slice imaging-based motion monitoring.
Four-dimensional computed tomography (4DCT) images of eight thoracic cancer patients were retrospectively analyzed. The target volumes were manually delineated at different respiratory phases of 4DCT. We performed automated image registration to establish the 4D respiratory target motion trajectories for all patients. PCA was conducted using the motion information to define the three principal components of the respiratory motion trajectories. Two imaging planes were determined perpendicular to the second and third principal component, respectively, to avoid imaging with the primary principal component of the through-plane motion. Single-slice images were reconstructed from 4DCT in the PCA-derived orthogonal imaging planes and were compared against the traditional AP/Lateral image pairs on through-plane motion, residual error in motion monitoring, absolute motion amplitude error and the similarity between target segmentations at different phases. We evaluated the significance of the proposed motion monitoring improvement using paired t test analysis.
The PCA-determined imaging planes had overall less through-plane motion compared against the AP/Lateral image pairs. For all patients, the average through-plane motion was 3.6 mm (range: 1.6-5.6 mm) for the AP view and 1.7 mm (range: 0.6-2.7 mm) for the Lateral view. With PCA optimization, the average through-plane motion was 2.5 mm (range: 1.3-3.9 mm) and 0.6 mm (range: 0.2-1.5 mm) for the two imaging planes, respectively. The absolute residual error of the reconstructed max-exhale-to-inhale motion averaged 0.7 mm (range: 0.4-1.3 mm, 95% CI: 0.4-1.1 mm) using optimized imaging planes, averaged 0.5 mm (range: 0.3-1.0 mm, 95% CI: 0.2-0.8 mm) using an imaging plane perpendicular to the minimal motion component only and averaged 1.3 mm (range: 0.4-2.8 mm, 95% CI: 0.4-2.3 mm) in AP/Lateral orthogonal image pairs. The root-mean-square error of reconstructed displacement was 0.8 mm for optimized imaging planes, 0.6 mm for imaging plane perpendicular to the minimal motion component only, and 1.6 mm for AP/Lateral orthogonal image pairs. When using the optimized imaging planes for motion monitoring, there was no significant absolute amplitude error of the reconstructed motion (P = 0.0988), while AP/Lateral images had significant error (P = 0.0097) with a paired t test. The average surface distance (ASD) between overlaid two-dimensional (2D) tumor segmentation at end-of-inhale and end-of-exhale for all eight patients was 0.6 ± 0.2 mm in optimized imaging planes and 1.4 ± 0.8 mm in AP/Lateral images. The Dice similarity coefficient (DSC) between overlaid 2D tumor segmentation at end-of-inhale and end-of-exhale for all eight patients was 0.96 ± 0.03 in optimized imaging planes and 0.89 ± 0.05 in AP/Lateral images. Both ASD (P = 0.034) and DSC (P = 0.022) were significantly improved in the optimized imaging planes.
Motion monitoring using imaging planes determined by the proposed PCA-based framework had significantly improved performance. Single-slice image-based motion tracking can be used for clinical implementations such as MR image-guided radiation therapy (MR-IGRT).
在使用单切片机载成像(OBI)模态(如电影 MRI)进行三维(3D)运动监测时,横过平面运动会引入不确定性。我们提出了一种基于主成分分析(PCA)的框架,以确定最佳成像平面,从而最小化基于单切片成像的运动监测的横过平面运动。
回顾性分析了 8 例胸部癌症患者的 4DCT 图像。在 4DCT 的不同呼吸阶段手动描绘靶区。我们进行了自动图像配准,为所有患者建立了 4D 呼吸靶区运动轨迹。使用运动信息进行 PCA 以定义呼吸运动轨迹的三个主成分。分别垂直于第二和第三主成分确定两个成像平面,以避免与过平面运动的主要主成分成像。从 4DCT 中以 PCA 得出的正交成像平面重建单切片图像,并与传统的 AP/Lateral 图像对进行比较,以比较过平面运动、运动监测中的残余误差、绝对运动幅度误差以及不同相位的目标分割之间的相似性。我们使用配对 t 检验分析评估了所提出的运动监测改进的意义。
与 AP/Lateral 图像对相比,PCA 确定的成像平面总体上具有较小的过平面运动。对于所有患者,AP 视图的平均过平面运动为 3.6mm(范围:1.6-5.6mm),Lateral 视图为 1.7mm(范围:0.6-2.7mm)。使用 PCA 优化后,两个成像平面的平均过平面运动分别为 2.5mm(范围:1.3-3.9mm)和 0.6mm(范围:0.2-1.5mm)。使用优化的成像平面重建最大呼气至吸气运动的绝对残余误差平均为 0.7mm(范围:0.4-1.3mm,95%置信区间:0.4-1.1mm),仅使用成像平面垂直于最小运动分量的平均为 0.5mm(范围:0.3-1.0mm,95%置信区间:0.2-0.8mm),在 AP/Lateral 正交图像对中平均为 1.3mm(范围:0.4-2.8mm,95%置信区间:0.4-2.3mm)。重建位移的均方根误差为优化成像平面为 0.8mm,仅垂直于最小运动分量的成像平面为 0.6mm,AP/Lateral 正交图像对为 1.6mm。当使用优化的成像平面进行运动监测时,重建运动的绝对幅度误差没有显著差异(P=0.0988),而 AP/Lateral 图像有显著误差(P=0.0097),使用配对 t 检验。所有 8 例患者在呼气末和吸气末重叠的二维(2D)肿瘤分割的平均表面距离(ASD)为优化成像平面中的 0.6±0.2mm,AP/Lateral 图像中的 1.4±0.8mm。所有 8 例患者在呼气末和吸气末重叠的二维(2D)肿瘤分割的 Dice 相似系数(DSC)为优化成像平面中的 0.96±0.03,AP/Lateral 图像中的 0.89±0.05。ASD(P=0.034)和 DSC(P=0.022)在优化成像平面中均有显著改善。
使用基于 PCA 的框架确定的成像平面进行运动监测的性能显著提高。基于单切片图像的运动跟踪可用于临床实施,如磁共振图像引导放射治疗(MR-IGRT)。