Suppr超能文献

用于组织工程应用的大孔点击弹性体水凝胶。

Macroporous click-elastin-like hydrogels for tissue engineering applications.

机构信息

Department of Biohybrid & Medical Textiles (BioTex) at AME-Institute of Applied Medical Engineering, Helmholtz Institute-CBMS, RWTH Aachen University, Forckenbeckstr. 55, 52074 Aachen, Germany.

Department of Biohybrid & Medical Textiles (BioTex) at AME-Institute of Applied Medical Engineering, Helmholtz Institute-CBMS, RWTH Aachen University, Forckenbeckstr. 55, 52074 Aachen, Germany.

出版信息

Mater Sci Eng C Mater Biol Appl. 2018 Jul 1;88:140-147. doi: 10.1016/j.msec.2018.03.013. Epub 2018 Mar 15.

Abstract

Elastin is a key extracellular matrix (ECM) protein that imparts functional elasticity to tissues and therefore an attractive candidate for bioengineering materials. Genetically engineered elastin-like recombinamers (ELRs) maintain inherent properties of the natural elastin (e.g. elastic behavior, bioactivity, low thrombogenicity, inverse temperature transition) while featuring precisely controlled composition, the possibility for biofunctionalization and non-animal origin. Recently the chemical modification of ELRs to enable their crosslinking via a catalyst-free click chemistry reaction, has further widened their applicability for tissue engineering. Despite these outstanding properties, the generation of macroporous click-ELR scaffolds with controlled, interconnected porosity has remained elusive so far. This significantly limits the potential of these materials as the porosity has a crucial role on cell infiltration, proliferation and ECM formation. In this study we propose a strategy to overcome this issue by adapting the salt leaching/gas foaming technique to click-ELRs. As result, macroporous hydrogels with tuned pore size and mechanical properties in the range of many native tissues were reproducibly obtained as demonstrated by rheological measurements and quantitative analysis of fluorescence, scanning electron and two-photon microscopy images. Additionally, the appropriate size and interconnectivity of the pores enabled smooth muscle cells to migrate into the click-ELR scaffolds and deposit extracellular matrix. The macroporous structure together with the elastic performance and bioactive character of ELRs, the specificity and non-toxic character of the catalyst-free click-chemistry reaction, make these scaffolds promising candidates for applications in tissue regeneration. This work expands the potential use of ELRs and click chemistry systems in general in different biomedical fields.

摘要

弹性蛋白是细胞外基质(ECM)的主要蛋白质之一,赋予组织功能性弹性,因此成为生物工程材料的理想候选物。基因工程弹性蛋白样重组体(ELRs)保持了天然弹性蛋白的固有特性(例如弹性行为、生物活性、低血栓形成性、逆温度转变),同时具有精确控制的组成、生物功能化的可能性和非动物来源。最近,通过无催化剂点击化学反应对 ELRs 进行化学修饰,进一步拓宽了它们在组织工程中的应用。尽管具有这些出色的特性,但迄今为止,具有可控、互连多孔性的大孔点击-ELR 支架的生成仍然难以实现。这极大地限制了这些材料的潜力,因为孔隙率对细胞浸润、增殖和 ECM 形成起着至关重要的作用。在这项研究中,我们提出了一种通过适应盐溶/气体发泡技术来克服这一问题的策略。结果,通过流变学测量和荧光、扫描电子显微镜和双光子显微镜图像的定量分析,可重复性地获得了具有可调孔径和机械性能的大孔水凝胶,其范围与许多天然组织相当。此外,适当的孔径大小和连通性使平滑肌细胞能够迁移到点击-ELR 支架中并沉积细胞外基质。大孔结构以及 ELRs 的弹性性能和生物活性特性、无催化剂点击化学反应的特异性和非毒性特性,使这些支架成为组织再生应用的有前途的候选物。这项工作扩展了 ELRs 和点击化学系统在不同生物医学领域的潜在用途。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验