Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
Nanoscale. 2018 Apr 26;10(16):7465-7471. doi: 10.1039/c8nr00432c.
Optical tuning and probing ultrafast structural response of nanomaterials driven by electronic excitation constitute a challenging but promising approach for understanding microscopic mechanisms and applications in microelectromechanical systems and optoelectrical devices. Here we use pulsed electron diffraction in a transmission electron microscope to investigate laser-induced tubular lattice dynamics of multi-walled carbon nanotubes (MWCNTs) with varying laser fluence and initial specimen temperature. Our photoexcitation experiments demonstrate cooperative and inverse collective atomic motions in intralayer and interlayer directions, whose strengths and rates depend on pump fluence. The electron-driven and thermally driven structural responses with opposite amplitudes cause a crossover between intralayer and interlayer directions. Our ab initio calculations support these findings and reveal that electrons excited from π to π* orbitals in a carbon tube weaken the intralayer bonds while strengthening the interlayer bonds along the radial direction. Moreover, by probing the structural dynamics of MWCNTs at initial temperatures of 300 and 100 K, we uncover the concomitance of thermal and nonthermal dynamical processes and their mutual influence in MWCNTs. Our results illustrate the nature of electron-driven nonthermal process and electron-phonon thermalization in the MWCNTs, and bear implications for the intricate energy conversion and transfer in materials at the nanoscale.
利用电子激发驱动的纳米材料的光学调谐和超快结构响应的研究,构成了一种理解微观机制并应用于微机电系统和光电设备的极具挑战性但很有前途的方法。在这里,我们使用透射电子显微镜中的脉冲电子衍射来研究具有不同激光能量密度和初始样品温度的多壁碳纳米管(MWCNT)的激光诱导管状晶格动力学。我们的光激发实验证明了层内和层间方向上协同和反向集体原子运动,其强度和速率取决于泵浦能量密度。电子驱动和热驱动的结构响应具有相反的幅度,导致层内和层间方向之间的交叉。我们的第一性原理计算支持这些发现,并表明从碳管中的π到π*轨道激发的电子削弱了层内键,同时沿径向方向增强了层间键。此外,通过在初始温度为 300 和 100 K 下探测 MWCNTs 的结构动力学,我们揭示了 MWCNTs 中热动力学过程和非热动力学过程的伴随性及其相互影响。我们的结果说明了 MWCNTs 中电子驱动的非热过程和电子-声子热化的本质,这对纳米尺度材料中复杂的能量转换和传递具有重要意义。