Kim Jeong-Jae, Jeong Yong-Hoon, Choe Han-Cheol
J Nanosci Nanotechnol. 2017 Apr;17(4):2285-290. doi: 10.1166/jnn.2017.13334.
In this study, the phenomena of nano and micro-pore formation on Ti-(10~50)Ta alloys by plasma electrolytic oxidation for dental implants was investigated using various experimental techniques. The Ti–xTa alloys having Ta contents of 10, 30, and 50 wt.% were prepared using arc-melting vacuum furnace. Micro-pore formation was performed using a potentiostat in 1 M H₃PO₄ electrolyte by using a potentiostat at various applied voltage (180 V, 210 V, and 240 V). The microstructure of Ti–xTa alloys changed from α′ phase to β + α″ phase with Ta content increased. The applied potential increased, the numbers of micro-pore per unit area decreased, whereas the area ratio of occupied by micro-pores increased. The Ta contents increased, the numbers of micro-pore per unit area decreased, whereas the area ratio of occupied by micro-pores increased at 210 V and 240 V. The thickness of oxide layer and micro-pore size can be controlled by applied potential.
在本研究中,使用各种实验技术研究了用于牙科植入物的Ti-(10~50)Ta合金通过等离子体电解氧化形成纳米和微孔的现象。采用电弧熔炼真空炉制备了Ta含量为10、30和50 wt.%的Ti–xTa合金。在1 M H₃PO₄电解液中使用恒电位仪,在不同施加电压(180 V、210 V和240 V)下进行微孔形成。随着Ta含量增加,Ti–xTa合金的微观结构从α′相转变为β + α″相。施加电位增加,单位面积的微孔数量减少,而微孔所占面积比增加。在210 V和240 V时,Ta含量增加,单位面积的微孔数量减少,而微孔所占面积比增加。氧化层厚度和微孔尺寸可通过施加电位来控制。