Suppr超能文献

门诊手术患者心理结局的预测模型:使用结构方程建模框架的前瞻性研究。

Prognostic model for psychological outcomes in ambulatory surgery patients: A prospective study using a structural equation modeling framework.

机构信息

Department of Anesthesiology, Erasmus University Medical Center, Rotterdam, The Netherlands.

Department of Public Health, Erasmus University Medical Center, Rotterdam, The Netherlands.

出版信息

PLoS One. 2018 Apr 11;13(4):e0193441. doi: 10.1371/journal.pone.0193441. eCollection 2018.

Abstract

INTRODUCTION

Surgical procedures are increasingly carried out in a day-case setting. Along with this increase, psychological outcomes have become prominent. The objective was to evaluate prospectively the prognostic effects of sociodemographic, medical, and psychological variables assessed before day-case surgery on psychological outcomes after surgery.

METHODS

The study was carried out between October 2010 and September 2011. We analyzed 398 mixed patients, from a randomized controlled trial, undergoing day-case surgery at a university medical center. Structural equation modeling was used to jointly study presurgical prognostic variables relating to sociodemographics (age, sex, nationality, marital status, having children, religion, educational level, employment), medical status (BMI, heart rate), and psychological status associated with anxiety (State-Trait Anxiety Inventory (STAI), Hospital Anxiety and Depression Scale (HADS-A)), fatigue (Multidimensional Fatigue Inventory (MFI)), aggression (State-Trait Anger Scale (STAS)), depressive moods (HADS-D), self-esteem, and self-efficacy. We studied psychological outcomes on day 7 after surgery, including anxiety, fatigue, depressive moods, and aggression regulation.

RESULTS

The final prognostic model comprised the following variables: anxiety (STAI, HADS-A), fatigue (MFI), depression (HADS-D), aggression (STAS), self-efficacy, sex, and having children. The corresponding psychological variables as assessed at baseline were prominent (i.e. standardized regression coefficients ≥ 0.20), with STAI-Trait score being the strongest predictor overall. STAI-State (adjusted R2 = 0.44), STAI-Trait (0.66), HADS-A (0.45) and STAS-Trait (0.54) were best predicted.

CONCLUSION

We provide a prognostic model that adequately predicts multiple postoperative outcomes in day-case surgery. Consequently, this enables timely identification of vulnerable patients who may require additional medical or psychological preventive treatment or-in a worst-case scenario-could be unselected for day-case surgery.

摘要

简介

手术程序越来越多地在日间手术环境中进行。随着这种增加,心理结果变得突出。目的是前瞻性评估术前评估的社会人口统计学、医学和心理变量对手术后心理结果的预后影响。

方法

该研究于 2010 年 10 月至 2011 年 9 月进行。我们分析了在大学医疗中心接受日间手术的 398 例混合患者的随机对照试验。结构方程模型用于联合研究与社会人口统计学(年龄、性别、国籍、婚姻状况、子女、宗教、教育程度、就业)、医学状况(BMI、心率)和与焦虑相关的心理状态(状态-特质焦虑量表(STAI)、医院焦虑和抑郁量表(HADS-A))、疲劳(多维疲劳量表(MFI))、攻击性(状态-特质愤怒量表(STAS))、抑郁情绪(HADS-D))、自尊和自我效能相关的术前预后变量。我们研究了手术后 7 天的心理结果,包括焦虑、疲劳、抑郁情绪和攻击性调节。

结果

最终的预后模型包括以下变量:焦虑(STAI、HADS-A)、疲劳(MFI)、抑郁(HADS-D)、攻击性(STAS)、自我效能、性别和子女。基线时评估的相应心理变量很突出(即标准化回归系数≥0.20),STAI-Trait 评分是总体上最强的预测指标。STAI-State(调整 R2=0.44)、STAI-Trait(0.66)、HADS-A(0.45)和 STAS-Trait(0.54)的预测效果最佳。

结论

我们提供了一个能够充分预测日间手术多项术后结果的预后模型。因此,这使得能够及时识别可能需要额外的医疗或心理预防治疗的脆弱患者,或者在最坏的情况下,可能会被不加选择地用于日间手术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c39e/5894974/6d36ac7760ea/pone.0193441.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验