Department of Physics , Moscow State University , 119991 Moscow , Russia.
Faculty of Physics , University of Bialystok , 15-245 Bialystok , Poland.
Nano Lett. 2018 May 9;18(5):2970-2975. doi: 10.1021/acs.nanolett.8b00416. Epub 2018 Apr 19.
We report spatial localization of the effective magnetic field generated via the inverse Faraday effect employing surface plasmon polaritons (SPPs) at Au/garnet interface. Analyzing both numerically and analytically the electric field of the SPPs at this interface, we corroborate our study with a proof-of-concept experiment showing efficient SPP-driven excitation of coherent spin precession with 0.41 THz frequency. We argue that the subdiffractional confinement of the SPP electric field enables strong spatial localization of the SPP-mediated excitation of spin dynamics. We demonstrate two orders of magnitude enhancement of the excitation efficiency at the surface plasmon resonance within a 100 nm layer of a dielectric garnet. Our findings broaden the horizons of ultrafast spin-plasmonics and open pathways toward nonthermal opto-magnetic recording on the nanoscale.
我们报告了通过金/石榴石界面的逆法拉第效应产生的有效磁场的空间定位。通过数值和分析两种方法分析了该界面处的表面等离激元(SPP)的电场,我们用一个实验证明了我们的研究,该实验展示了以 0.41THz 频率进行的高效 SPP 驱动的相干自旋进动激发。我们认为 SPP 电场的亚衍射限制能够实现自旋动力学的 SPP 介导激发的强空间定位。我们在介电石榴石的 100nm 层内展示了在表面等离子体共振处的激发效率提高了两个数量级。我们的发现拓宽了超快自旋等离子体学的视野,并为纳米尺度上的非热光磁记录开辟了途径。