Suppr超能文献

高光谱数据分析中基于离散余弦变换的独立成分分析预处理方法

DCT-Based Preprocessing Approach for ICA in Hyperspectral Data Analysis.

作者信息

Boukhechba Kamel, Wu Huayi, Bazine Razika

机构信息

The State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan 430079, China.

出版信息

Sensors (Basel). 2018 Apr 8;18(4):1138. doi: 10.3390/s18041138.

Abstract

The huge quantity of information and the high spectral resolution of hyperspectral imagery present a challenge when performing traditional processing techniques such as classification. Dimensionality and noise reduction improves both efficiency and accuracy, while retaining essential information. Among the many dimensionality reduction methods, Independent Component Analysis (ICA) is one of the most popular techniques. However, ICA is computationally costly, and given the absence of specific criteria for component selection, constrains its application in high-dimension data analysis. To overcome this limitation, we propose a novel approach that applies Discrete Cosine Transform (DCT) as preprocessing for ICA. Our method exploits the unique capacity of DCT to pack signal energy in few low-frequency coefficients, thus reducing noise and computation time. Subsequently, ICA is applied on this reduced data to make the output components as independent as possible for subsequent hyperspectral classification. To evaluate this novel approach, the reduced data using (1) ICA without preprocessing; (2) ICA with the commonly used preprocessing techniques which is Principal Component Analysis (PCA); and (3) ICA with DCT preprocessing are tested with Support Vector Machine (SVM) and K-Nearest Neighbor (K-NN) classifiers on two real hyperspectral datasets. Experimental results in both instances indicate that data after our proposed DCT preprocessing method combined with ICA yields superior hyperspectral classification accuracy.

摘要

高光谱图像的海量信息和高光谱分辨率在执行诸如分类等传统处理技术时带来了挑战。降维和降噪可提高效率和准确性,同时保留关键信息。在众多降维方法中,独立成分分析(ICA)是最流行的技术之一。然而,ICA计算成本高昂,且由于缺乏成分选择的特定标准,限制了其在高维数据分析中的应用。为克服这一局限性,我们提出了一种新颖的方法,即应用离散余弦变换(DCT)作为ICA的预处理。我们的方法利用DCT将信号能量集中在少数低频系数中的独特能力,从而降低噪声和计算时间。随后,将ICA应用于降维后的数据,以使输出成分尽可能独立,用于后续的高光谱分类。为评估这种新颖的方法,在两个真实的高光谱数据集上,使用支持向量机(SVM)和K近邻(K-NN)分类器对以下三种降维后的数据进行测试:(1)未经预处理的ICA;(2)采用常用预处理技术主成分分析(PCA)的ICA;(3)采用DCT预处理的ICA。在这两种情况下的实验结果均表明,我们提出的结合DCT预处理方法的ICA所处理后的数据产生了更高的高光谱分类精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de79/5948902/6ed264d4043a/sensors-18-01138-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验