Suppr超能文献

使用皮尔逊曲线系统对从细针穿刺抽吸活检(FNAC)显微镜图像中提取的良性和恶性乳腺细胞的形态特征进行分析。

Analysis of Morphological Features of Benign and Malignant Breast Cell Extracted From FNAC Microscopic Image Using the Pearsonian System of Curves.

作者信息

Rajbongshi Nijara, Bora Kangkana, Nath Dilip C, Das Anup K, Mahanta Lipi B

机构信息

Central Computational and Numerical Studies, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India.

Department of Statistics, Gauhati University, Guwahati, Assam, India.

出版信息

J Cytol. 2018 Apr-Jun;35(2):99-104. doi: 10.4103/JOC.JOC_198_16.

Abstract

CONTEXT

Cytological changes in terms of shape and size of nuclei are some of the common morphometric features to study breast cancer, which can be observed by careful screening of fine needle aspiration cytology (FNAC) images.

AIMS

This study attempts to categorize a collection of FNAC microscopic images into benign and malignant classes based on family of probability distribution using some morphometric features of cell nuclei.

MATERIALS AND METHODS

For this study, features namely area, perimeter, eccentricity, compactness, and circularity of cell nuclei were extracted from FNAC images of both benign and malignant samples using an image processing technique. All experiments were performed on a generated FNAC image database containing 564 malignant (cancerous) and 693 benign (noncancerous) cell level images. The five-set extracted features were reduced to three-set (area, perimeter, and circularity) based on the mean statistic. Finally, the data were fitted to the generalized Pearsonian system of frequency curve, so that the resulting distribution can be used as a statistical model. Pearsonian system is a family of distributions where kappa (κ) is the selection criteria computed as functions of the first four central moments.

RESULTS AND CONCLUSIONS

For the benign group, kappa (κ) corresponding to area, perimeter, and circularity was -0.00004, 0.0000, and 0.04155 and for malignant group it was 1016942, 0.01464, and -0.3213, respectively. Thus, the family of distribution related to these features for the benign and malignant group were different, and therefore, characterization of their probability curve will also be different.

摘要

背景

细胞核形状和大小的细胞学变化是研究乳腺癌的一些常见形态计量学特征,通过仔细筛查细针穿刺细胞学(FNAC)图像可以观察到这些特征。

目的

本研究试图利用细胞核的一些形态计量学特征,基于概率分布族将一组FNAC显微图像分类为良性和恶性类别。

材料和方法

在本研究中,使用图像处理技术从良性和恶性样本的FNAC图像中提取细胞核的面积、周长、偏心率、紧密度和圆形度等特征。所有实验均在一个生成的FNAC图像数据库上进行,该数据库包含564张恶性(癌性)和693张良性(非癌性)细胞水平图像。基于均值统计,将提取的五组特征简化为三组(面积、周长和圆形度)。最后,将数据拟合到频率曲线的广义皮尔逊系统,以便得到的分布可以用作统计模型。皮尔逊系统是一族分布,其中kappa(κ)是根据前四个中心矩的函数计算的选择标准。

结果与结论

对于良性组,面积、周长和圆形度对应的kappa(κ)分别为-0.00004、0.0000和0.04155,对于恶性组,分别为1016942、0.01464和-0.3213。因此,良性和恶性组与这些特征相关的分布族不同,因此,它们概率曲线的特征也将不同。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fb3/5885612/e3c1b4d6b678/JCytol-35-99-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验