Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
Department of Geriatrics & Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.
Endocrinology. 2018 May 1;159(5):2253-2263. doi: 10.1210/en.2018-00108.
Previous studies have implicated urotensin-II in the nociception of sensory neurons. However, to date the relevant mechanisms remain unknown. In the current study we determined the role of urotensin-II in the regulation of transient outward A-type potassium currents (IA) and neuronal excitability in trigeminal ganglion (TG) neurons. We found that application of urotensin-II to small-diameter TG neurons decreased IA in a dose-dependent manner, whereas the delayed rectifier potassium current was unaffected. The IA decrease induced by urotensin-II depended on the urotensin-II receptor (UT-R) and was associated with a hyperpolarizing shift in the steady-state inactivation curve. Exposure of TG cells to urotensin-II markedly increased protein kinase C (PKC) activity, and PKC inhibition eliminated the UT-R-mediated IA decrease. Antagonism of PKCα, either pharmacologically or genetically, but not of PKCβ prevented the decrease in IA induced by urotensin-II. Analysis of phospho-extracellular signal-regulated kinase (p-ERK) revealed that urotensin-II significantly increased the expression level of p-ERK, whereas p-p38 and p-c-Jun N-terminal kinase remained unchanged. Inhibition of mitogen-activated protein kinase/ERK signaling by the kinase antagonist U0126 and PD98059 completely abolished the UT-R-mediated IA decrease. Moreover, urotensin-II significantly increased the action potential firing rate of small TG neurons; pretreatment with 4-aminopyridine prevented this effect. In summary, our findings suggest that urotensin-II selectively attenuated IA through stimulation of the PKCα-dependent ERK1/2 signaling pathway. This UT-R-dependent mechanism might contribute to neuronal hyperexcitability in TG neurons.
先前的研究表明,尾加压素-II 参与了感觉神经元的痛觉传导。然而,到目前为止,相关机制尚不清楚。在本研究中,我们确定了尾加压素-II 在调节三叉神经节(TG)神经元中的瞬时外向 A 型钾电流(IA)和神经元兴奋性中的作用。我们发现,尾加压素-II 的应用以剂量依赖性方式降低了小直径 TG 神经元中的 IA,而延迟整流钾电流不受影响。尾加压素-II 诱导的 IA 降低依赖于尾加压素-II 受体(UT-R),并与稳态失活曲线的超极化偏移有关。TG 细胞暴露于尾加压素-II 会显著增加蛋白激酶 C(PKC)活性,而 PKC 抑制消除了 UT-R 介导的 IA 降低。PKCα 的药理学或遗传学拮抗作用,但不是 PKCβ 的拮抗作用,可防止尾加压素-II 诱导的 IA 降低。磷酸化细胞外信号调节激酶(p-ERK)分析表明,尾加压素-II 显著增加了 p-ERK 的表达水平,而 p-p38 和 p-c-Jun N-末端激酶保持不变。激酶拮抗剂 U0126 和 PD98059 抑制丝裂原活化蛋白激酶/ERK 信号完全消除了 UT-R 介导的 IA 降低。此外,尾加压素-II 显著增加了小 TG 神经元的动作电位发放率;4-氨基吡啶预处理可防止这种效应。总之,我们的研究结果表明,尾加压素-II 通过刺激 PKCα 依赖性 ERK1/2 信号通路选择性地减弱了 IA。这种 UT-R 依赖性机制可能有助于 TG 神经元中的神经元过度兴奋。