Rabouw Freddy T, Prins P Tim, Villanueva-Delgado Pedro, Castelijns Marieke, Geitenbeek Robin G, Meijerink Andries
Debye Institute for Nanomaterials Science , Utrecht University , Princetonplein 1 , 3584 CC Utrecht , The Netherlands.
ACS Nano. 2018 May 22;12(5):4812-4823. doi: 10.1021/acsnano.8b01545. Epub 2018 Apr 19.
Lanthanide-doped upconversion (UC) phosphors absorb low-energy infrared light and convert it into higher-energy visible light. Despite over 10 years of development, it has not been possible to synthesize nanocrystals (NCs) with UC efficiencies on a par with what can be achieved in bulk materials. To guide the design and realization of more efficient UC NCs, a better understanding is necessary of the loss pathways competing with UC. Here we study the excited-state dynamics of the workhorse UC material β-NaYF co-doped with Yb and Er. For each of the energy levels involved in infrared-to-visible UC, we measure and model the competition between spontaneous emission, energy transfer between lanthanide ions, and other decay processes. An important quenching pathway is energy transfer to high-energy vibrations of solvent and/or ligand molecules surrounding the NCs, as evidenced by the effect of energy resonances between electronic transitions of the lanthanide ions and vibrations of the solvent molecules. We present a microscopic quantitative model for the quenching dynamics in UC NCs. It takes into account cross-relaxation at high lanthanide-doping concentration as well as Förster resonance energy transfer from lanthanide excited states to vibrational modes of molecules surrounding the UC NCs. Our model thereby provides insight in the inert-shell thickness required to prevent solvent quenching in NCs. Overall, the strongest contribution to reduced UC efficiencies in core-shell NCs comes from quenching of the near-infrared energy levels (Er: I and Yb: F), which is likely due to vibrational coupling to OH defects incorporated in the NCs during synthesis.
镧系元素掺杂的上转换(UC)磷光体吸收低能量红外光并将其转换为高能量可见光。尽管经过了十多年的发展,但仍无法合成出具有与块状材料相当的上转换效率的纳米晶体(NCs)。为了指导设计和实现更高效的上转换NCs,有必要更好地理解与上转换竞争的损耗途径。在这里,我们研究了掺杂Yb和Er的主力上转换材料β-NaYF的激发态动力学。对于红外到可见光上转换所涉及的每个能级,我们测量并模拟了自发发射、镧系离子之间的能量转移以及其他衰减过程之间的竞争。一个重要的猝灭途径是能量转移到NCs周围溶剂和/或配体分子的高能量振动,镧系离子的电子跃迁与溶剂分子振动之间的能量共振效应证明了这一点。我们提出了一个用于上转换NCs猝灭动力学的微观定量模型。它考虑了高镧系掺杂浓度下的交叉弛豫以及从镧系激发态到上转换NCs周围分子振动模式的福斯特共振能量转移。因此,我们的模型提供了关于防止NCs中溶剂猝灭所需的惰性壳层厚度的见解。总体而言,核壳NCs上转换效率降低的最大贡献来自近红外能级(Er:I和Yb:F)的猝灭,这可能是由于在合成过程中与NCs中掺入的OH缺陷的振动耦合所致。