AbbVie Deutschland GmbH & Co. KG , 67061 Ludwigshafen , Germany.
Mol Pharm. 2018 May 7;15(5):1870-1877. doi: 10.1021/acs.molpharmaceut.8b00043. Epub 2018 Apr 12.
The preparation of an amorphous solid dispersion (ASD) by dissolving a poorly water-soluble active pharmaceutical ingredient (API) in a polymer matrix can improve the bioavailability by orders of magnitude. Crystallization of the API in the ASD, though, is an inherent threat for bioavailability. Commonly, the impact of crystalline API on the drug release of the dosage form is studied with samples containing spiked crystallinity. These spiked samples possess implicit differences compared to native crystalline samples, regarding size and spatial distribution of the crystals as well as their molecular environment. In this study, we demonstrate that it is possible to grow defined amounts of crystalline API in solid dosage forms, which enables us to study the biopharmaceutical impact of actual crystallization. For this purpose, we studied the crystal growth in fenofibrate tablets over time under an elevated moisture using transmission Raman spectroscopy (TRS). As a nondestructive method to assess API crystallinity in ASD formulations, TRS enables the monitoring of crystal growth in individual dosage forms. Once the kinetic trace of the crystal growth for a certain environmental condition is determined, this method can be used to produce samples with defined amounts of crystallized API. To investigate the biopharmaceutical impact of crystallized API, non-QC dissolution methods were used, designed to identify differences between the various amounts of crystalline materials present. The drug release in the samples manufactured in this fashion was compared to that of samples with spiked crystallinity. In this study, we present for the first time a method for targeted crystallization of amorphous tablets to simulate crystallized ASDs. This methodology is a valuable tool to generate model systems for biopharmaceutical studies on the impact of crystallinity on the bioavailability.
通过将难溶性活性药物成分(API)溶解在聚合物基质中制备无定形固体分散体(ASD)可以将生物利用度提高几个数量级。然而,API 在 ASD 中的结晶是对生物利用度的固有威胁。通常,通过含有外加结晶度的样品来研究 API 的结晶对剂型药物释放的影响。与天然结晶样品相比,这些外加样品在晶体的大小和空间分布以及其分子环境方面具有隐含的差异。在这项研究中,我们证明了在固体制剂中生长一定量的结晶 API 是可能的,这使我们能够研究实际结晶对生物制药的影响。为此,我们使用透射拉曼光谱(TRS)研究了在高湿度下一段时间内非诺贝特片剂中晶体的生长情况。作为评估 ASD 配方中 API 结晶度的非破坏性方法,TRS 能够监测单个剂型中晶体的生长。一旦确定了特定环境条件下晶体生长的动力学轨迹,该方法就可以用于生产具有定义量结晶 API 的样品。为了研究结晶 API 的生物制药影响,使用了非 QC 溶解方法,旨在识别存在的各种结晶材料之间的差异。以这种方式制造的样品的药物释放与外加结晶度的样品的药物释放进行了比较。在这项研究中,我们首次提出了一种针对无定形片剂的靶向结晶方法,以模拟结晶 ASD。该方法学是一种生成用于生物制药研究的有价值的工具,用于研究结晶度对生物利用度的影响的模型系统。