Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana, 47907, USA.
Charles B. Davidson School of Chemical Engineering, College of Engineering, Purdue University, West Lafayette, Indiana, 47907, USA.
AAPS J. 2021 May 17;23(4):69. doi: 10.1208/s12248-021-00598-6.
Crystallinity in an amorphous solid dispersion (ASD) may negatively impact dissolution performance by causing lost solubility advantage and/or seeding crystal growth leading to desupersaturation. The goal of the study was to evaluate underlying dissolution and crystallization mechanisms resulting from residual crystallinity contained within bicalutamide (BCL)/polyvinylpyrrolidone vinyl acetate copolymer (PVPVA) ASDs produced by hot melt extrusion (HME). In-line Raman spectroscopy, polarized light microscopy, and scanning electron microscopy were used to characterize crystallization kinetics and mechanisms. The fully amorphous ASD (0% crystallinity) did not dissolve completely, and underwent crystallization to the metastable polymorph (form 2), initiating in the amorphous matrix at the interface of the amorphous solid with water. Under non-sink conditions, higher extents of supersaturation were achieved because dissolution initially proceeded unhindered prior to nucleation. ASDs containing residual crystallinity had markedly reduced supersaturation. Solid-mediated crystallization (matrix crystallization) consumed the amorphous solid, growing the stable polymorph (form 1). Under sink conditions, both the fully amorphous ASD and crystalline physical mixture achieve faster release than the ASDs containing residual crystallinity. In the latter systems, matrix crystallization leads to highly agglomerated crystals with high relative surface area. Solution-mediated crystallization was not a significant driver of concentration loss, due to slow crystal growth from solution in the presence of PVPVA. The high risk stemming from residual crystallinity in BCL/PVPVA ASDs stems from (1) fast matrix crystallization propagating from crystal seeds, and (2) growth of the stable crystal form. This study has implications for dissolution performance outcomes of ASDs containing residual crystallinity.
无定形固体分散体 (ASD) 中的结晶度可能会通过导致溶解度优势丧失和/或成核晶体生长导致过饱和度降低,从而对溶解性能产生负面影响。本研究的目的是评估由热熔挤出 (HME) 产生的比卡鲁胺 (BCL)/聚乙烯基吡咯烷酮醋酸乙烯酯共聚物 (PVPVA) ASD 中残留结晶度引起的潜在溶解和结晶机制。在线拉曼光谱、偏光显微镜和扫描电子显微镜用于表征结晶动力学和机制。完全无定形的 ASD(0%结晶度)未完全溶解,经历了向亚稳定多晶型物(形式 2)的结晶,在无定形基质与水的界面处从无定形基质开始。在非溶出条件下,实现了更高程度的过饱和度,因为在成核之前溶解最初不受阻碍地进行。含有残留结晶度的 ASD 具有明显降低的过饱和度。固相亲核结晶(基质结晶)消耗无定形固体,生长稳定的多晶型物(形式 1)。在溶出条件下,完全无定形的 ASD 和结晶物理混合物的释放速度都比含有残留结晶度的 ASD 更快。在后一种系统中,由于 PVPVA 的存在,从溶液中缓慢生长晶体,导致基质结晶形成高团聚晶体,具有高的相对表面积。由于在 PVPVA 存在下溶液中晶体生长缓慢,溶液介导的结晶不是浓度损失的主要原因。BCL/PVPVA ASD 中残留结晶度带来的高风险源于 (1) 从晶体种子快速传播的基质结晶,和 (2) 稳定晶体形式的生长。本研究对含有残留结晶度的 ASD 的溶解性能结果具有重要意义。